Автоматические системы с обратной связью в автомобиле. Тенденции развития автомобильного бортового электронного оборудования. EBD - распределяем тормозное усилие

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Современные автобусы и грузовые машины буквально «начинены» всевозможной электроникой. Микропроцессоры улучшают ходовые параметры ТС, снижают эксплуатационные расходы, повышают комфортабельность работы водителя и делают ТО более эффективным. Они воздействуют на:

  • Электрику: зажигание, освещение и прочие узлы.
  • Механику: мотор, ходовая часть и другие системы, отвечающие за управляемость и безопасность ТС.
  • Логистику: контроль работы техники, учет пассажиров.

Чтобы обеспечить сбор информации, на каждом автобусе или грузовике последних моделей устанавливается бортовая сеть, способная отправлять и получать сообщения по определенным наборам соглашений интерфейса. Официально они называются протоколами.

За счет подобной унификации процесса, различные электронные системы автомобилей, которых в машине может насчитываться до 10 штук, могут «понимать» друг друга. Если сообщение, отправленное по одному протоколу, надо конвертировать (преобразовать) в другой, то для этого имеются специальные шлюзы.

Бортовые системы электронного управления работой мотора или трансмиссии изначально монтировались на автомобиль заводом-изготовителем. Логистические компоненты (fleet management) довольно долго устанавливались сторонними организациями. Однако, на сегодняшний день, ведущие фирмы, такие как Scania или MAN, начали оборудовать стандартные версии своей техники и этими электронными системами автомобилей. Теперь передачу информации по беспроводной связи (GPS/GSM/WI-FI/RFID) о параметрах работы ТС на диспетчерский пункт обеспечивает Fleet management собственного производства.

Электронные системы автомобилей имеют достаточно большой расчетный срок службы. Он заметно превышает аналогичный показатель механических агрегатов и узлов и не зависит от пробега. Однако на практике продолжительность работы оказывается меньшей из-за воздействия влажности, вибрации и грязи. Если микропроцессоры выходят из строя, то качественную диагностику может выполнить только профессионал с необходимым оборудованием.

Нередко бывает так, что механики и водители не видят разницы между понятиями «электронный» и «электрический». К автоэлектрике относятся аккумуляторы, стартер, фары, электродвигатели для вентилятора и отопления, лампы накаливания, соединители, переключатели, проводка. Для управления ими в схему включаются электрические реле, которые срабатывают после определенного воздействия.

По мере усовершенствования транспортных средств, управление с помощью реле оказалось неэффективным. Вместо него появились устройства на микропроцессорах (ECU или ECM), с программным обеспечением и блоком памяти. Следующей ступенью развития бортовых электронных систем была их интеграция в единую управляющую систему.

После этого процесс стал выглядеть так. Например, во время переключения КПП, происходит обмен данными между ECU трансмиссии и ECU двигателя. В итоге мгновенно уменьшается крутящий момент, обеспечивая плавный переход на другую передачу.

Устройства разных изготовителей пользуются протоколами, от вида которых зависит степень интеграции. ECU двигателя получает команды от акселератора, датчиков температуры масла, антифриза, воздуха, турбокомпрессора, скорости. В результате топливная система моментально приспосабливается к изменившимся условиям и впрыскивает солярку в точно определенное время.

Благодаря этому, эффективность работы мотора увеличивается, а содержание вредных примесей в отработанных газах снижается. Кроме того, в памяти ECU двигателя хранятся параметры работы агрегата и коды неисправностей. После подключения микропроцессора к тестеру или ноутбуку, их можно считывать, для проведения точной диагностики.

ECU трансмиссии определяет момент изменения передаточных отношений. Этот микропроцессор тоже получает данные из разных источников: джойстика КПП, газовой педали, датчиков двигателя, скорости автомобиля и угловой скорости на выходном валу. В процессе «принятия решений» учитывается вес машины, мощность силового агрегата, вязкость и нагрев масла в КПП, коэффициент трения дисков сцепления. Результатом комплексной обработки полученных данных является последовательное и плавное переключение передач, благодаря чему экономится топливо.

ABS (антиблокировочная система) была разработана в 1975 году. Сегодня это штатное оборудование большинства современных автобусов и грузовиков. В ее задачи входит контроль скорости вращения колес при движении. Первые версии были ненадежными. Но алгоритмы и микропроцессоры все время совершенствовались, в результате чего на сегодняшний день ABS эффективно предотвращает блокировку после резкого нажатия на педаль тормоза. Это повышает управляемость ТС в критической ситуации. Система работает следующим образом. На каждом колесе есть датчик, посылающий информацию о скорости вращения на ECU ABS. Если значение данного параметра падает до нуля, ECU сигнализирует в тормозную систему о том, что надо снизить давление на тормозе этого колеса.

Давление сбрасывается, колесо начинает вращаться, ECU опять применяет торможение, после чего снова сбрасывает давление. Подобный цикличный процесс выполняется за очень малые промежутки времени и продолжается до полной остановки машины. Для повышения эффективности работы, ABS обменивается данными с системой контроля тяги (АТС).

Микроконтроллеры установлены даже на таких, казалось бы, «второстепенных» системах, как кондиционирование, вентиляция и отопление. Раньше, если в кабине было холодно, водитель просто нажимал на кнопку, чтобы включить печку. Становилось жарко - выключал ее или, опять-таки вручную, понижал степень нагрева. Сегодня комфортабельная температура в салоне поддерживается автоматически.

Этим занимается климат-контроль, который можно запрограммировать так, чтобы результаты отвечали потребностям водителя и пассажиров. Это более всего актуально в рефрижераторных фурах, внутри которых должна точно поддерживаться определенная температура. Единственный минус системы HVAC (Heating Ventilation Air-Conditioning) заключается в том, что ее диагностика пока еще достаточно трудоемкая.

Для объединения всех электронных систем автомобиля в единый комплекс предусмотрена мультиплексированная шина данных, которая заменяет несколько кабелей разного типа. Благодаря ей системы могут обмениваться друг с другом различной информацией. Они подключаются к шине по тому же принципу, как компьютеры в офисе присоединяются к локальной сети. Это еще одно важное отличие электроники от электрики, потому что в последнем случае от каждого устройства, фары или стартера, идет отдельный провод. Эти провода затем собираются в жгуты и выводятся на панель с управляющими реле.

Скорость движения и грузоподъемность ТС постоянно растет. Повышаются требования к безопасности движения, экологичности транспорта и комфорту работы водителя. Бортовые системы автомобилей - это незаменимые помощники, позволяющие современным грузовикам и автобусам соответствовать самым высоким стандартам.

Видео: Аренда спецтехники и услуги грузоперевозки без посредников!

Научно-техническая революция начала свой забег в середине ХХ столетия, и до сих пор не может остановиться. Это особенно заметно, если заглянуть под капот современного автомобиля: транспортные средства сегодня превратились в настоящие крепости на колесах, которые могут защитить водителя от многих неприятностей. И не последнюю роль в этой всей истории с гарантией удачной поездки играют системы безопасности автомобиля.

Ситроеновская система AFIL, отслеживающая положение авто относительно разметки

Фото

Каждый день конструкторы автомобильных концернов усложняют чертежи автомобилей, делая их все заковыристее и непонятнее для рядового пользователя. Сегодня бал правят интеллектуальные системы безопасности, а также различные средства, обеспечивающие комфортное вождение. И если учесть, что обстановка на дорогах мира, мягко говоря, далека от идеала, то автомобилю, который не оснащен современными средствами пассивной и активной безопасности, все сложнее «пробиваться» к покупателю.

ABS - антиблокировочная система

Задача ABS (anti-lock braking system ) заключается в том, чтобы предотвратить блокировку колес притормаживающего автомобиля, а также сохранить его управляемость и курсовую устойчивость.

Когда колеса блокируются, и машина, кажется, вот-вот сорвется в занос, электроника начинает методично «отпускать» и «прижимать» тормозные колодки, что дает возможность колесам проворачиваться. Эффективность системы ABS зависит в первую очередь от того, насколько хорошо она настроена. Если, например, она срабатывает слишком рано, то тормозной путь может существенно увеличиться.

Принцип действия

Механизм функционирования ABS довольно прост. Датчики вращения колес издают сигналы, которые попадают на анализирующий их компьютер. Происходит как бы имитация действий профессионального водителя, который использует метод прерывистого торможения.

Насколько же эффективна данная система? Следует сразу отметить, что с момента ее появления не умолкают споры по поводу того, больше от нее пользы или все же вреда. Но, как бы там ни было, даже противники ABS не могут игнорировать такие ее полезные качества, как значительное сокращение тормозного пути, а также сохранение контроля над многотонным авто во время экстренного торможения. Да, при срабатывании АБС очень сложно рассчитать длину тормозного пути, но лучше в полном неведении остановиться неизвестно за сколько метров до фонарного столба, чем «поцеловать» его, точно зная, сколько автомобиль протянет во время торможения. Два противоборствующих лагеря решили сойтись на том, что ABS придется как нельзя кстати неопытным водителям, а «шумахеры» всегда смогут переиграть систему. Но мы ведь говорим с вами о революционной научной мысли, потому сегодня уже смело можно утверждать, что в схватке «ABS - опытный водитель» безоговорочную победу одержит, конечно же, электроника.


Фото

Современные многоканальные ABS позволяют избавиться даже от вибрации тормозной педали при включенной системе. Когда-то причиной дорожно-транспортных происшествий становилось резкое срабатывание ABS: педаль начинала вибрировать, а машина - стонать, потому неопытные автомобилисты пугались и отпускали тормоз. Сегодня же нужно быть крайне чувствительным, чтобы почувствовать, как срабатывает ABS, входящая в стандартную комплектацию почти всех автомобилей. При этом она служит основой для других более сложных электронных систем безопасности.

ASR - антипробуксовочная система

У системы ASR (anti-slip regulation ) есть масса названий, самыми распространенными из которых являются TRC , или «трэкшн-контроль », STC , ASC+T и TRACS . Эта активная система безопасности автомобиля функционирует в тесной связке с ABS и EBD и предназначается для предотвращения пробуксовки колес, независимо от состояния дорожного полотна и усилия, применяемого для нажатия на педаль газа. Как мы уже сказали выше, многие системы безопасности работают на основе ABS. Вот и ASR использует датчики антиблокировочной системы, фиксируя пробуксовку ведущих колес, снижает обороты мотора и, если возникает такая необходимость, притормаживает колеса, обеспечивая эффективный набор скорости. Иными словами, даже если вы «утопите» педаль газа в пол, ASR не даст жечь резину и заниматься шлифовкой асфальта.


Сегодня автомобили оснащают даже приборами ночного видения

Фото

Главное назначение ASR - обеспечение устойчивости авто при резком старте или же при движении в гору по сколькой дороге. «Прокрутка» колес нивелируется благодаря перераспределению крутящего момента силовой установки на те колеса, который в данный момент имеют лучшее сцепление с дорожным полотном. Для ASR действуют определенные ограничения. К примеру, она работает исключительно на скоростях, не превышающих 40 км/ч.

Недостатки

Нельзя не сказать и о некоторых недостатках данной системы. Так, ASR будет очень мешать опытным водителям, пытающимся вытащить застрявшую машину «в раскачку». Система будет не к месту и не ко времени притормаживать и сбрасывать газ. Известны случаи, когда антипробуксовочная система настолько «душила» двигатель, что автомобиль вообще не мог двигаться.

Или вот, к примеру, активные драйверы. Им ASR вставляет палки в колеса при управляемом заносе, контролируя этот занос тягой. Но это не идет ни в какое сравнение с той пользой, которую приносит система: она блокирует дифференциал, притормаживает колесо, загруженное в повороте, и уравнивает скорость вращения колес, позволяя максимально эффективно использовать крутящий момент «сердечка» автомобиля.

Многие автопроизводители сегодня забывают о стрит-рейсерах и делают ASR неотключаемой. Но разве наших изобретательных водителей может что-то остановить? Они просто извлекают предохранитель и потакают своим амбициям гонщика. Однако тут есть и свое «но»: если вы уверены в том, что ASR помешает вам посадить на поводок скорость, мы напоминаем, что данную систему используют в болидах Формулы 1.

EBD - распределяем тормозное усилие

EBD (electronic brake distribution ), или EBV - это активная система безопасности авто, отвечающая за распределение тормозного усилия между всеми колесами. Снова-таки, EBD всегда работает параллельно с основополагающей ABS.

Примечательно, что EBD начинает действовать до реакции ABS, или же страхует последнюю в том случае, если она неисправна. Так как эти системы тесно связаны и всегда работают в паре, то в каталогах очень часто можно встретить обобщающую аббревиатуру ABS+EBD.

Благодаря EBD мы получаем оптимальное сцепление колес с дорогой, значительно повышенную курсовую устойчивость авто при экстренном торможении, а также гарантию того, что контроль над автомобилем не будет потерян даже в критической ситуации. Кроме того, система учитывает такие факторы, как положение автомобиля относительно дороги и загрузка транспортного средства.

Brake assistant - безопасное торможение

Brake Assist (BAS, DBS, PA, PABS ) представляет собой активную систему безопасности автомобиля, которая работает в одной упряжке с ABS и EBD. Она включается в момент экстренного торможения, когда водитель недостаточно сильно, но довольно резко нажимает на педаль тормоза. Brake Assist самостоятельно измеряет усилие и скорость нажатия на педаль и, если необходимо, немедленно повышает уровень давления в тормозной магистрали. Это дает возможность торможению быть максимально эффективным и значительно сократить тормозной путь.


Brake Assist

Фото

Система умеет различать панические действия водителей или же те моменты, когда они довольно продолжительный отрезок времени давят на тормозную педаль. BAS не будет вступать в работу при резких торможениях, которые входят в разряд «прогнозируемых». Многие считают, что эта система является помощником в основном для представительниц слабого пола, ведь у милых дам иногда попросту не хватает сил для осуществления экстренного торможения. Потому в критической ситуации им на помощь приходит система Brake Assist, которая и «дожимает» тормоз до максимального замедления.

EDL: блокируем дифференциал

EDL (electronic differential lock ), которую еще называют EDS , - это система, отвечающая за блокировку дифференциала. Этот электронный помощник дает возможность повысить общую безопасность автомобиля, улучшить его характеристики тяги при неблагоприятных условиях, облегчить момент трогания, обеспечивает интенсивный разгон, а также движение на подъем.


Фото

Система блокировки дифференциала определяет угловую скорость каждого из ведущих колес и сопоставляет полученные результаты. Если угловые скорости не совпадают, например, при пробуксовке одного из колес, EDL подтормаживает буксующее колесо до тех пор, пока скорость его вращения не сравняется со скоростью другого ведущего. Если разность частот вращения достигает отметки в 110 оборотов в минуту, система включается автоматически и действует без каких-либо ограничений на скоростях до 80 км/ч.

HDC: контролируем тягу во время спуска

HDC (hill descent control ), а также DAC и DDS - электронная система контроля тяги для спуска со скольких и крутых уклонов. Функционирование системы осуществляется через подтормаживание колес и «удушение» силового агрегата, однако при этом действует фиксированное ограничение скорости в пределах 7 км/ч (при заднем ходе скорость не превышает 6,5 км/ч). Это пассивная система, которая как включается, так и выключается самим водителем. Регулируемая скорость при спуске в полной мере зависит от первоначальной скорости автомобиля, а также от включенной передачи.


Фото

Система, контролирующая скорость, позволяет отвлечься от тормозной педали и сосредоточиться исключительно на управлении. Этой системой комплектуются все полноприводные транспортные средства. HDC, в автоматическом режиме включающая стоп-сигналы, отключается сразу после того, как скорость автомобиля переваливает за отметку 60 км/ч.

HHC - облегченный подъем

В отличие от системы HDC, помогающей водителям спускаться с крутых склонов, HHC (hill hold control ) предотвращает откат машины при движении в гору. Альтернативными названиями данной системы безопасности являются USS и HAC .


Фото

В тот момент, когда водитель перестает взаимодействовать с педалью тормоза, HDC продолжает удерживать высокий уровень давления в тормозной системе. Лишь в тот момент, когда автомобилист достаточно сильно нажмет педаль газа, давление снижается, и автомобиль начинает движение с места.

ACC: в круиз на автомобиле

ACC (active cruise control ) является адаптивным круиз-контролем, используемым для поддержания заданного скоростного режима автомобиля и контроля безопасной дистанции. PBA (predictive brake assist ) является прогнозирующей системой торможения, которая работает совместно с адаптивным круиз-контролем.


Круиз-контроль

Фото

Если расстояние до впереди идущего авто сокращается, система начинает притормаживать до тех пор, пока дистанция не восстановится до заданного уровня. Если же впереди идущий автомобиль начинает отдаляться, ACC начинает прибавлять скорость.

PDC - парковка под контролем

PDC (parking distance control ), в простонародье Parktronik - система, использующая ультразвуковые сенсоры для определения расстояния до препятствия и позволяющая контролировать дистанцию при парковке.


Парктроник

Фото

О том, насколько велико расстояние до ближайшего препятствия, водителя информируют специальные сигналы, частота которых изменяется при сокращении дистанции - чем ближе автомобиль к опасному участку, тем короче паузы между отдельными сигналами. После того, как до препятствия остается 20 см, сигнал становится непрерывным.

ESP - гарантия курсовой устойчивости

У системы ESP (electronic stability program ), наверное, больше всего альтернативных названий, в которых и черт шейку бедра сломит: ESC, VDC, DSTC, VSC, DSC, VSA, ATTS или Stabilitrac . Данная активная система безопасности отвечает за курсовую устойчивость автомобиля и работает вместе с ABS и EBD.

В тот момент, когда возникает опасность заноса, на сцену выходит ESP. Проанализировав скорость вращения колес, давление в тормозной магистрали, положение руля, угловую скорость и поперечное ускорение, ESP за каких-то 20 миллисекунд вычисляет, какие колеса необходимо притормозить и насколько нужно снизить обороты двигателя для того, дабы стабилизировать авто.


Фото

Электронные системы безопасности вовсе не превращают наши автомобили в высокоинтеллектуальных роботов, которые смогут проделать всю работу за водителя. Краеугольным камнем в этом случае пока остается водитель, который должен уметь трезво оценивать дорожную ситуацию, свои возможности и возможности своего автомобиля. А, как известно, опасней иллюзии, чем иллюзия собственной неуязвимости, не существует.

» Электронные системы автомобиля — в помощь водителю

Вспомогательные электронные системы предназначены для создания условий способствующих улучшению управления автомобилем. Разработано множество различных электронных систем действующих совместно с агрегатами автомобиля, которые можно классифицировать:

  • Вспомогательные системы, работающие совместно с механизмами тормозного контура:
    — автоблокировочные,
    — экстремального торможения.
  • Соблюдение курсовой устойчивости.
  • Соблюдение дистанции при движении между автомобилями.
  • Поддержка перестроения автомобилей при движении со сменой полос автотрассы.
  • Парковка с использованием ультразвуковых сигналов.
  • Использование камеры заднего вида.
  • Bluetooth.
  • Круиз-контроль

Антиблокировочная тормозная система

АБС () – специально для повышения эффективности работы тормозов при различных дорожных погодных условиях.

Считывает скорость вращения каждого колеса и при усиленном торможении препятствует блокированию и скольжению, тем самым оставляет возможность управлять и маневрировать транспортным средством до полной остановки.

В ее состав входит:

  • электронный блок управления;
  • механизм – модулятор регулировки давления рабочей (тормозной) жидкости, (блок ABS);
  • показывающих угловую скорость вращения колес.

Система экстремального торможения

Предназначена для экстренного торможения в условиях требующих немедленной остановки автомобиля. И помогает водителю дожимать педаль тормоза, при расчете малоэффективности торможения.

Состоит из блоков:

  • гидравлического модуля с компонованного с блоком АБС и насосом обратной подачи тормозной жидкости;
  • датчика, показывающего давление в гидравлическом контуре;
  • датчика, фиксирующего скорость вращения колес;
  • устройства выключения сигнала передаваемого на усилитель экстремального торможения.

Система курсовой устойчивости автомобиля

Позволяет стабилизировать поперечную динамику движения автомобиля, предотвращает занос транспортного средства. Действует совместно с АБС и системой управления двигателем.

В ее состав входит:

  • электронный блок-контроллер;
  • датчик, показывающий положение рулевого колеса;
  • датчик давления в системе тормозов.

Курсовая устойчивость показала себя с высокой эффективностью на обледенелых дорогах, помогая водителю в трудных ситуациях

Система соблюдения расстояния между движущимися автомобилями

САРД – электронная система соблюдения необходимого, заданного расстояния между автомобилями, работающая в автоматическом режиме. Эффективность действия САРД возможна при скорости движения до 180 км/час и действует совместно с системой регулирования скорости, позволяя водителю управлять автомобилем в более комфортных условиях.

Система поддержки смены полос движения

Предназначена для контроля окружающей обстановки при осуществлении маневрирования на трассе. Позволяет с помощью радара контролировать мертвую зону вокруг автомобиля и предупреждает водителя о возникновении помех при движении, предотвращает дорожно-транспортные пришествия.

Электронная система парковки автомобиля

Предназначена для обеспечения безопасности маневров при парковке автомобиля. Электронная система состоит из нескольких ультразвуковых датчиков, которые передают информацию водителю о возможных препятствиях с помощью специальных звуковых и визуальных сигналов. Сигнальные датчики работают в режиме приема-передачи сигнала и позволяют использовать их с наибольшей эффективностью.

Камера заднего вида

Предназначена для передачи визуальных изображений позади автомобиля. Совместное использование звуковых датчиков и камеры заднего вида предотвращает возникновение ситуаций столкновения с препятствиями позади транспортного средства при маневрах.

Вспомогательная система Bluetooth

Bluetooth – обеспечивает мобильную связь для различных устройств, установленных на автомобиле:

  • телефон;
  • ноутбук.

Помогает водителю меньше отвлекаться от дороги. Обеспечивая безопасность и комфорт при вождении автомобиля.

Состоит из блоков:

  • электронного приемо-передающего блока;
  • антенны.

Круиз-контроль

Помогает водителю, увеличивая комфорт вождения.

Поддерживает заданную скорость транспортного средства вне зависимости от рельефа местности, на спусках и подъемах дороги. Имеет управление с добавлением скорости и лимита скорости, так же присутствует запоминание установленного лимита. Отключается при нажатии на педаль тормоза или сцепления, так же имеет свой собственный выключатель. При нажатии на педаль газа транспортное средство ускоряется, после отпускания, возвращается к своему лимиту скорости.

Пользователь имеет возможность значительно упростить и автоматизировать использование систем автомобиля с учетом автономного управления.

Электронная диагностика систем автомобиля проводиться при прохождении каждого технического обслуживания официальным дилером. Выдается бумага о наличии неисправностей с распечаткой кодов ошибок. Однако существует небольшая грань между установленным оборудованием и штатным. По штатному оборудованию, дилер обязан предоставить ремонт и его диагностику, а вот по установленному может вам отказать, тем более если оборудование устанавливалось в гаражных условиях с внедрением в проводку и изменением алгоритмов работы. В таких ситуациях если машина на гарантии, то можно лишиться гарантийного обслуживания. Будьте осторожны при установке дополнительного оборудования!

Блок управления дверями автомобиля — функции сети CAN Пежо 308 — недостатки и отзывы владельцев новой модели
Что такое АБС (ABS) — антиблокировочная система тормозов
Тормозная система автомобиля — ремонт или замена Что такое система Start-Stop?
Система охлаждения двигателя автомобиля, принцип действия, неисправности

Каждое следующее поколение транспортных средств с течением времени стает все больше компьютеризованным, вытесняя механические системы и постепенно меняя их на электронные. И если еще пару десятков лет назад любой водитель мог собственноручно поменять сгоревшую лампу в фаре, то нынче непрофессиональное вмешательство в работу автоэлектроники, которой в разной степени оборудованы современные версии авто, может повлечь самые серьезные и неотвратимые сбои в ее работе.

Либо же по причине замыкания проводки может произойти возгорание и уничтожение транспортного средства за считанные минуты, что, в принципе, понятно, ведь все новое электронное оборудование состоит из множества связанных узлов. Поэтому каждый владелец, бережно относящийся к своему авто, ремонт электронного оборудования должен доверить только профи, которыми и являются все сотрудники нашего автотехцентра.

Диагностика ЭБУ в автоцентре Митино

Системы электронного оборудования – важная составная начинки современного автомобиля. Они контролируются электронными блоками управления (ЭБУ) и необходимы для регулировки работы почти всех автомобильных систем.

Диагностика ЭБУ, как правило, проводится непосредственно на транспортном средстве. В нее входит диагностика сканером, проверка режимов включения в блоках управления и проверка работы главных функций ЭБУ (управление бензонасосом, главным реле, форсунками впрыска, зажиганием и др.).Дилерские центры не занимаются ремонтом автоэлектроники, поэтому использование диагностического высокотехнологичного оборудования в сочетании с опытом высококвалифицированного персонала автоцентра Митино – залог своевременного выявления поломок и их качественного устранения.

Причины неисправностей и ремонт ЭБУ

Обычно ЭБУ сбиваются с нормального режима работы из-за перенапряжения или негативного внешнего влияния, типа перегрева, вибрации, коррозии, влаги либо механического повреждения электронных блоков управления. Часто от таких негативных факторов страдает АБС (антиблокировочная система тормозов) и коммутационный блок BSI. Например, нам нередко приходится делать ремонт BSI Пежо 307 или работать с автомобилями Опель Вектра, ремонт АБС которых поставил в затруднительное положение мастеров других сервисов.

Здесь необходимо напомнить, что ремонт ЭБУ Опель Астра, Вектра, Корса, автовладелец просто обязан делать с течением времени эксплуатации техсредства. Из-за заводского расположения блока в отсеке двигателя, где он поддается постоянным вибрациям, появляются ошибки в данных управления разнообразными датчиками. Технология ремонта ЭБУ, которая применяется в автотехцентре Митино, полностью устраняет подобные проблемы.

Распространенные неполадки панели приборов и устранение их в автоцентре Митино

Современные варианты приборных панелей на автомобилях оснащены внутри множеством электронных элементов, в которых иногда возникают неисправности. Из наиболее частых, с которыми с легкостью справляются наши мастера, можно выделить мигание либо выключение подсветки панели приборов, неисправную работу спидометра и тахометра при нормально поступающем сигнале.

В автомобилях Skoda, Renault, VW, Opel нередко появляются проблемы с информационным ЖК-дисплеем, требующие немедленного вмешательства специалистов. А ремонт панели приборов Рено Сценик усложняется наличием газоразрядного индикатора панелей, который снять, избежав разгерметизации, может только профи.

Многие автовладельцы при малейшей неисправности панели сразу меняют ее на новую. Однако сервисные возможности автотехцентра Митино сегодня таковы, что ремонт панели приборов – это уже не проблема, а услуга, позволяющая автовладельцу существенно сэкономить.

Определяясь с выбором подходящего сервиса, помните, что наш профессионализм, опыт и уважительное отношение к каждому клиенту, которыми не всегда могут похвастать другие ремонтные компании, – залог самого качественного ремонта Вашего автомобиля.

Введение

В настоящее время техническая оснащенность автомобиля различными электронными системами значительно возросла. Последние достижения в области электроники и микропроцессоров способствовали повышению надежности, эргономичное TM и безопасности автомобиля.

Доля электроники в автомобилях постоянно увеличивается - в 2000 году на нее приходилось 22% стоимости автомобиля, а в 2010 - 35%.

Еще более возрастает роль электронных и микропроцессорных систем, которые во многом определяют активную и пассивную безопасность автомобиля. Так 1 июля 2004 года в Европейском союзе вступило в силу коллективное обязательство автопроизводителей не поставлять на рынок автомобили без антиблокировочных систем. Как ожидается, вскоре аналогичное решение будет принято и по подушкам безопасности.

Не меньшее внимание уделяется экологическим показателям автомобиля, выполнить которые без микропроцессорного управления силовым агрегатом невозможно.

1. Общие сведения об электронных и микропроцессорных системах автомобиля

Понятие электронной системы является более общим, нежели понятие микропроцессорной системы. В самом общем смысле под электронной системой понимается система, построенная на радиоэлектронных элементах.

Электронная система автомобиля - система (узел) автомобиля, алгоритм функционирования которой определяется принципиальной электрической схемой блока управления или всего узла. При этом технически электронный блок управления (ЭБУ) или весь узел может быть выполнен на дискретных и (или) интегральных радиоэлементах, а изменение алгоритма работы системы или узла невозможно без изменения электрической схемы.

Микропроцессорная система автомобиля - система автомобиля, алгоритм функционирования которой определяется программой процессора электронного блока управления (ЭБУ). Таким образом, в данной системе всегда есть блок управления на основе микропроцессора и для изменения алгоритма работы системы требуется изменить программу микропроцессора.

Основные компоненты электронных и микропроцессорных систем автомобиля.

Современный автомобиль обладает значительным количеством электронных и микропроцессорных систем различного назначения и уровня сложности, что определило разнообразие в элементной базе устройств и технологиях их изготовления.

Рассмотрим основные критерии классификации электронных компонентов автомобиля.

По типу элементов: дискретные и интегральные электронные компоненты.

По типу рабочего сигнала : цифровые и аналоговые компоненты.

По условиям применения: стандартные (универсальные) и специальные компоненты.

Более подробно рассмотрим интегральные микросхемы (ИС), которые в настоящее время являются преобладающими в автомобильной электронике.

В подавляющем большинстве сейчас используются монолитные интегральные микросхемы (1С- integrated circuit), то есть выполненные на едином кристалле полупроводника (чаще кремния) по планарной технологии. Данная технология позволяет производить в микросборке все полупроводниковые элементы, а также пассивные компоненты, такие как резисторы и конденсаторы. Выделяют пять уровней интеграции микросхем:

- низкая (SSI);

- средняя (MSI);

- высокая (LSI);

- сверхвысокая (VLSI);

- ультравысокая (ULSI).

В настоящее время производятся последние три группы интегральных микросхем. Аналоговые интегральные микросхемы чаще всего делятся по назначению: операционные усилители, стабилизаторы напряжения, усилители низкой частоты, компараторы и т. д.

Цифровые интегральные микросхемы имеют, как правило, два критерия классификации:

- по технологии полупроводников: биполярные, на основе полевых транзисторов и гибридные.

- по назначению: логические, триггеры, регистры, шифраторы, мультиплексоры, микросхемы памяти, высокомощные микросхемы.

Отдельным классом цифровых интегральных микросхем стоят микропроцессоры.

Микропроцессор (МП) - это программно управляемое устройство, осуществляющее процесс обработки цифровой информации и управление этим процессом, реализованное в одной или нескольких больших интегральных схемах (БИС).

Микропроцессорная ЭВМ (или микроЭВМ) - это ЭВМ, включающая микропроцессор, полупроводниковую память, средства связи с периферийными устройствами и, при необходимости, пульт управления и блок питания, объединенные одной несущей конструкцией.

В зависимости от способа конструирования микроЭВМ делят на:

- однокристальные, выполненные на одном кристалле,

- одноплатные, реализованные на одной плате,

- многоплатные, когда микропроцессор и основная память располагаются на одной плате, средства связи с периферийными устройствами - на других.

Микропроцессорная система (МПС) - информационная, измерительная, управляющая или другая специализированная цифровая система, включающая микроЭВМ и средства сопряжения с обслуживаемым объектом.

Программное обеспечение МПС (ПО МПС) - совокупность программ, которые находятся в памяти системы и реализуют алгоритм функционирования системы.

2. Системы управления двигателем

2.1 Основные принципы управления двигателем

Автомобильный двигатель представляет собой систему, состоящую из отдельных подсистем: системы топливоподачи, зажигания, охлаждения, смазки ит.д. Все системы связаны друг с другом и при функционировании они образуют единое целое.

Схема двигателя как объекта автоматического управления приведена на рис.2.

Входные параметры (угол открытия дроссельной заслонки j др, угол опережения зажигания q , цикловой расход топлива G т и др.) - это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.

Выходные параметры , называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент Ме, показатель топливной экономичности g е и токсичности отработавших газов (например, содержания СО), а также многие другие.

Кроме входных управляющих параметров, на двигатель во время его работы воздействуют случайные возмущения , которые мешают управлению. К случайным возмущениям можно отнести изменение параметров состояния внешней среды (температура Т, атмосферное давление р, влажность), свойств топлива и масла и т.д.

Для двигателя внутреннего сгорания характерна периодическая повторяемость рабочих циклов. Как объект управления двигатель считается нелинейным, так как реакция на сумму любых внешних воздействий не равна сумме реакций на каждое из воздействий в отдельности. Учитывая, что двигатель в условиях городской езды работает на нестационарных режимах, возникает проблема оптимального управления им. Возможность оптимального управления двигателем на нестационарных режимах появилась с развитием электронных систем управления.

Управление двигателем нельзя рассматривать в отрыве от управления автомобилем. Скоростные и нагрузочные режимы работы двигателя зависят от скоростных режимов движения автомобиля в различных условиях эксплуатации, которые включают в себя разгоны и замедления, движение с относительно постоянной скоростью, остановки.

Водитель изменяет скоростной и нагрузочный режим двигателя, воздействуя на дроссельную заслонку. Выходные характеристики двигателя при этом зависят от состава топливо-воздушной смеси и угла опережения зажигания, управление которыми обычно осуществляется автоматически.

Входные параметры - это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.

Выходные параметры, называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент, показатель топливной экономичности и токсичности отработавших газов (например, содержания СО), а также многие другие.

2.2 Электронные системы впрыскивания бензина

Применение систем впрыскивания топлива взамен традиционных карбюраторов обеспечивает повышение топливной экономичности и снижение токсичности отработавших газов. Они позволяют в большей степени по сравнению с карбюраторами с электронным управлением оптимизировать процесс смесеобразования. Однако следует отметить, что системы впрыскивания топлива сложнее систем топливоподачи с использованием карбюраторов из-за большего числа подвижных прецизионных механических элементов и электронных устройств и требуют более квалифицированного обслуживания в эксплуатации.

По мере развития систем впрыскивания топлива на автомобили устанавливались механические, электронные и цифровые системы. К настоящему времени структурные схемы систем впрыскивания топлива в основном стабилизировались При распределенном впрыскивании топливо подается в зону впускных клапанов каждого цилиндра группами форсунок без согласования момента впрыскивания с процессами впуска в каждый цилиндр (несогласованное впрыскивание) или каждой форсункой в определенный момент времени, согласованный с открытием соответствующих впускных клапанов цилиндров (согласованное впрыскивание). Системы распределенного впрыскивания топлива позволяют повысить приемистость автомобиля, надежность пуска, ускорить прогрев и увеличить мощность двигателя.

При распределенном впрыскивании топлива появляется возможность применения газодинамического наддува, расширяются возможности в создании различных конструкций впускного трубопровода. Однако у таких систем по сравнению с центральным впрыскиванием больше погрешность дозирования топлива из-за малых цикловых подач.

Идентичность составов горючей смеси по цилиндрам в большей степени зависит от неравномерности дозирования топлива форсунками, чем от конструкции впускной системы. При центральном впрыскивании топливо подается одной форсункой, устанавливаемой на участке до разветвления впускного трубопровода. Существенных изменений в конструкции двигателя нет. Система центрального впрыскивания практически взаимозаменяема с карбюратором и может применяться на уже эксплуатируемых двигателях. При центральном впрыскивании обеспечивается большая точность и стабильность дозирования топлива.

Особенно эффективна в отношении повышения топливной экономичности система распределенного впрыскивания топлива в сочетании с цифровой системой зажигания.

В мировой практике разработкой электронных систем впрыска топлива занимаются многие фирмы, однако наиболее известны в Европе: BOSCH, Siemens, поэтому чаще всего используют их обозначение систем. Общепринятым международным обозначением электронных систем впрыска является Jetronic. В настоящее время в массовом производстве преобладает система под названием LH-Jetronic, которая является системой распределенного впрыска топлива во впускной трубопровод. Применяется как синхронный и асинхронный впрыск топлива. Главной чертой этой системы является термоанемометрический расходомер воздуха, взамен расходомера на основе потенциометра с заслонкой.

2.3 Микропроцессорные системы управления бензиновым двигателем

Сейчас практически отказались производители от отдельных электронных систем впрыска и производят электронные системы управления двигателем (МСУД), объединяющие управление впрыском топлива и зажиганием бензинового двигателя. Такие системы обозначаются Motronic. Производятся на современном этапе три типа систем:

-M-Motronic - микропроцессорная система управления зажиганием и распределенным впрыском топлива;

-ME-Motronic - микропроцессорная система управления зажиганием и распределенным, последовательным впрыском топлива, с X- регулированием и электронным дросселем (система ETC);

-MED-Motronic- микропроцессорная система управления зажиганием и непосредственным впрыском топлива в цилиндры (Direct injection, DI).

Рассмотрим особенности систем ME-Motronic и MED-Motronic.

Система ME-Motronic

Кроме основных своих функций система ME-Motronic выполняет и целый ряд дополнительных функций с разомкнутой и замкнутой системами управления. В качестве примера можно назвать:

-регулирование частоты вращения коленчатого вала на холостом ходу; регулирование коэффициента избытка воздуха (замкнутая система управления);

-улавливание топливных паров; рециркуляция отработавших газов для снижения содержания оксидов азота;

-контроль за работой вспомогательной воздушной системы для снижения содержания углеводородов в отработавших газах;

-автоматическое регулирование скорости движения (круиз-контроль).

Система MED-Motronic

При оснащении бензинового двигателя с искровым зажиганием и непосредственным впрыском топлива системой MED-Motronic расход топлива может быть снижен не менее чем на 20 % по сравнению с двигателем, имеющим впрыск топлива во впускной трубопровод.

При этом может быть достигнут длительный эффект снижения выбросов диоксида углерода (СО2) во время движения автомобиля.

При непосредственном впрыске топлива должна осуществляться возможность скоординированного выбора между вариантами применения неоднородной смеси (послойного заряда) при неполной нагрузке и однородной (гомогенной) смеси при полной нагрузке и наоборот.

Основными требованиями при использовании системы MED-Motronic являются:

-точное дозирование потребного количества впрыскиваемого топлива;

-создание необходимого давления впрыска;

-управление моментом впрыска;

-впрыскивание топлива непосредственно в камеру сгорания.

Так же должны быть согласованы требования к величине крутящего момента двигателя, с тем, чтобы затем имелась возможность проведения необходимых регулировочных операций на данном двигателе.

Принцип работы электронной системы управления двигателем

Электронная система управления двигателем (ЭСУД) может быть системой управления как бензиновым, так и дизельным двигателем. Указанная система управления состоит из входных датчиков, ЭБУ, а также исполнительных устройств.

Развитие электронных систем управления ДВС стало возможным благодаря активному внедрению в конструкцию силовых агрегатов электронных компонентов. Еще одним фактором развития электронного управления стали экологические нормы и стандарты, полного соответствия которым можно добиться только при условии высокоточной работы управляющих систем.

На раннем этапе система управления двигателем представляла собой решение, в котором конструктивно были объединены система зажигания и система впрыска топлива. Сегодня ЭБУ двигателем контролирует большое количество систем и механизмов ДВС, среди которых:

  • система впуска;
  • система топливного впрыска;
  • система зажигания;
  • система охлаждения;
  • система EGR;
  • система выпуска;
  • тормозная система и т.д.

Система управления двигателем работает по следующему принципу. В различных механизмах ДВС установлены входные датчики. Среди основных выделяют:

  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик расхода воздуха (сегодня используется массовый воздухорасходомер ДМРВ);
  • датчик давления топлива;
  • датчик положения распредвала (датчик Холла, ДПРВ);
  • датчик коленвала;
  • датчик детонации;
  • кислородные датчики;
  • датчики температуры ОЖ, моторного масла, воздуха и т.д.

Указанные датчики осуществляют замер параметров работы мотора, после чего происходит преобразование в электрический сигнал. На современных автомобилях сигнал может быть как аналоговым, так и цифровым. Данные от датчиков являются основой, которая позволяет ЭБУ контролировать работу двигателя на разных режимах. Показания отдельно взятых датчиков могут служить для управления как одной, так и одновременно несколькими системами силового агрегата.



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»