Электронные системы управления автомобилем. Функции электронного управления системами автомобиля с бензиновым двигателем. Электронные системы впрыскивания бензина

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Каждое следующее поколение транспортных средств с течением времени стает все больше компьютеризованным, вытесняя механические системы и постепенно меняя их на электронные. И если еще пару десятков лет назад любой водитель мог собственноручно поменять сгоревшую лампу в фаре, то нынче непрофессиональное вмешательство в работу автоэлектроники, которой в разной степени оборудованы современные версии авто, может повлечь самые серьезные и неотвратимые сбои в ее работе.

Либо же по причине замыкания проводки может произойти возгорание и уничтожение транспортного средства за считанные минуты, что, в принципе, понятно, ведь все новое электронное оборудование состоит из множества связанных узлов. Поэтому каждый владелец, бережно относящийся к своему авто, ремонт электронного оборудования должен доверить только профи, которыми и являются все сотрудники нашего автотехцентра.

Диагностика ЭБУ в автоцентре Митино

Системы электронного оборудования – важная составная начинки современного автомобиля. Они контролируются электронными блоками управления (ЭБУ) и необходимы для регулировки работы почти всех автомобильных систем.

Диагностика ЭБУ, как правило, проводится непосредственно на транспортном средстве. В нее входит диагностика сканером, проверка режимов включения в блоках управления и проверка работы главных функций ЭБУ (управление бензонасосом, главным реле, форсунками впрыска, зажиганием и др.).Дилерские центры не занимаются ремонтом автоэлектроники, поэтому использование диагностического высокотехнологичного оборудования в сочетании с опытом высококвалифицированного персонала автоцентра Митино – залог своевременного выявления поломок и их качественного устранения.

Причины неисправностей и ремонт ЭБУ

Обычно ЭБУ сбиваются с нормального режима работы из-за перенапряжения или негативного внешнего влияния, типа перегрева, вибрации, коррозии, влаги либо механического повреждения электронных блоков управления. Часто от таких негативных факторов страдает АБС (антиблокировочная система тормозов) и коммутационный блок BSI. Например, нам нередко приходится делать ремонт BSI Пежо 307 или работать с автомобилями Опель Вектра, ремонт АБС которых поставил в затруднительное положение мастеров других сервисов.

Здесь необходимо напомнить, что ремонт ЭБУ Опель Астра, Вектра, Корса, автовладелец просто обязан делать с течением времени эксплуатации техсредства. Из-за заводского расположения блока в отсеке двигателя, где он поддается постоянным вибрациям, появляются ошибки в данных управления разнообразными датчиками. Технология ремонта ЭБУ, которая применяется в автотехцентре Митино, полностью устраняет подобные проблемы.

Распространенные неполадки панели приборов и устранение их в автоцентре Митино

Современные варианты приборных панелей на автомобилях оснащены внутри множеством электронных элементов, в которых иногда возникают неисправности. Из наиболее частых, с которыми с легкостью справляются наши мастера, можно выделить мигание либо выключение подсветки панели приборов, неисправную работу спидометра и тахометра при нормально поступающем сигнале.

В автомобилях Skoda, Renault, VW, Opel нередко появляются проблемы с информационным ЖК-дисплеем, требующие немедленного вмешательства специалистов. А ремонт панели приборов Рено Сценик усложняется наличием газоразрядного индикатора панелей, который снять, избежав разгерметизации, может только профи.

Многие автовладельцы при малейшей неисправности панели сразу меняют ее на новую. Однако сервисные возможности автотехцентра Митино сегодня таковы, что ремонт панели приборов – это уже не проблема, а услуга, позволяющая автовладельцу существенно сэкономить.

Определяясь с выбором подходящего сервиса, помните, что наш профессионализм, опыт и уважительное отношение к каждому клиенту, которыми не всегда могут похвастать другие ремонтные компании, – залог самого качественного ремонта Вашего автомобиля.

Современные автомобили в изобилии предлагают водителям разнообразных электронных помощников. В этой статье мы разберем причины появления таких систем, а также их работу.

Именно зимой, на скользкой дороге, и проявляются все преимущества высоких технологий, которые добавляют водителю спокойствия и уверенности. С другой стороны, рассмотрев подробно работу электроники, мы четко поймем ее возможности и перестанем приписывать ей чудесные свойства. Мысль о том, что на дорогом автомобиле все можно, крайне опасна.

Режимы работы АКПП

Автоматические коробки переключения передач имеют, как правило, несколько режимов работы:

  • нормальный;
  • спортивный;
  • зимний.

Все отличие между ними заключается лишь в том, в какой момент и какие передачи включаются. В одной из предыдущих статей мы рассматривали принципы подбора передач. Напомним - передачи подбираются из тех соображений, чтобы двигатель работал в том режиме, который требуется для достижения определенных целей.

Например, спортивный режим подразумевает подбор передач таким образом, чтобы двигатель все время работал на высоких оборотах, выдавая наибольшую мощность. Нормальный режим, наоборот, поддерживает двигатель в зоне умеренных оборотов - экономичном диапазоне. Конечно, когда водитель значительно утапливает педаль газа, электроника воспринимает это, как желание интенсивно ускоряться и включает более низкую передачу, что повышает обороты двигателя, соответственно, и его мощность - функция kick-down. Как только разгон закончен (педаль газа отпущена), автоматика снова включает высокую передачу, а вместе с ней и экономичный режим работы двигателя.

Оптимальный вариант для зимних дорог

Самый актуальный на сегодняшний день, зимний режим, отличается не только тем, что двигатель поддерживается на небольших оборотах, но и тем, что включаются по возможности более высокие передачи. В результате электроника не позволяет получить на колесах максимальный крутящий момент для предотвращения пробуксовки ведущих колес. В таком режиме, конечно, затруднительно взбираться на подъемы или кого-то буксировать, зато не требуется тонкая работа с газом при движении по скользкому покрытию.

Современные антипробуксовочные системы, которые будут рассмотрены ниже, больше не требуют от водителя вмешиваться в работу АКПП, поэтому зимний режим как таковой отсутствует. Электроника самостоятельно регулирует режимы работы двигателя и АКПП для достижения наилучших результатов в любой момент времени.

Последнее достижение технической мысли, которое появилось на современных автомобилях, - бесступенчатые КПП - вариаторы. Здесь вообще нет фиксированных передач - передаточное отношение может меняться плавно, без разрыва потока мощности и практически в бесконечном диапазоне. Конечно, современная электроника может управлять таким устройством с максимальной точностью, что позволяет добиться прекрасных результатов в любых условиях.

Антиблокировочная система тормозов (ABS)

Эта система была разработана самой первой из устройств активной безопасности. Причина ее появления следующая - тормозные механизмы любого автомобиля рассчитаны на большие нагрузки, поэтому при интенсивном торможении может возникнуть такая ситуация, когда тормоза настолько сильно зажмут колеса, что те перестанут вращаться. Автомобиль продолжает двигаться по инерции, а колеса скользят, как лыжи, происходит блокировка колес.

Когда колеса заблокированы, они в значительной мере теряют сцепление с дорогой. И что самое неприятное - они теряют его во всех направлениях. В результате, автомобиль не только начинает хуже тормозить, он вообще начинает хуже держаться за дорогу - его может развернуть или снести в сторону.

Как работает система ABS

На каждом из колес находится специальный датчик, который определяет - вращается колесо или нет. Как только этот датчик дает команду о том, что колесо остановилось, электроника, при помощи специального перепускного клапана, сбавляет давление в соответствующей тормозной магистрали. Это позволяет ослабить тормозное усилие, и колесо снова может вращаться. Теперь тот же датчик отвечает - колесо вращается, электроника снова зажимает тормозные механизмы. Так происходит много раз в секунду.

В результате работы системы ABS в тормозных магистралях возникают импульсы давления, и водитель ощущает значительную вибрацию педали тормоза. Кроме того, раздается характерный треск. Иногда это даже пугает водителя, впервые столкнувшегося с работой ABS - ему кажется, что автомобиль разваливается.

Эффективность работы системы

Иногда мы слышим от водителей недовольство системой ABS - я давлю на тормоз, все трещит, а машина продолжает двигаться вперед, без ABS я бы остановился быстрее. При работе антиблокировочной системы колеса продолжают немного проворачиваться, и водителю кажется, что система не позволяет использовать весь их потенциал по торможению. Это ошибочное ощущение - без ABS водитель бы заблокировал колеса надолго, и тормозной путь был бы намного больше.

Конечно, справедливости ради, нужно сказать о том, что на различных покрытиях максимально эффективное торможение может достигаться по-разному - бывают ситуации, когда даже полная и длительная блокировка колес приводит к отменному результату. ABS выполняет некую усредненную программу, поэтому, например, на гоночной технике таких систем не ставят - там опытный пилот добивается лучших результатов самостоятельно. Тем не менее, в обычной жизни случаи, когда профессионал может своими действиями достичь большего, чем электроника, редки.

И если вы не хотите все время быть в полной концентрации, как раллист на спец.участке, ABS сослужит вам добрую службу.

Только не забывайте о том, что в конечном итоге все зависит от водителя. Старайтесь тормозить на прямой (мы ранее рассматривали силы, действующие на колеса автомобиля), так тормозной путь будет меньше. При срабатывании ABS на автомобилях с механической КПП колеса частично блокируются, и двигатель вынужден работать на предельно малых оборотах - он пытается тянуть автомобиль дальше. Нажав на сцепление, вы отсоедините двигатель от колес и облегчите работу ABS.

Антипробуксовочная система и системы стабилизации

Буксование ведущих колес при разгоне также характеризуется потерей сцепления с дорогой. Длительное буксование не позволяет эффективно разгоняться на прямой и приводит к сносу ведущих колес при движении по дуге - переднеприводные автомобили соскальзывают с дороги передними колесами, заднеприводные - задними. Со всеми этими неприятностями справляется антипробуксовочная система.

При поступлении сигнала о том, что какое-либо из колес начало вращаться намного быстрее, чем его коллеги - электроника ограничивает подачу топлива в двигатель, как будто водитель сбавил газ. При этом ничего не трещит и не вибрирует - автомобиль просто вяло реагирует на газ. В связи с тем, что система воздействует не на колеса, а на двигатель, наблюдается определенная инерционность и «тупость» в реакциях автомобиля.

Поэтому, для тех, кто умеет и готов действовать самостоятельно, предусмотрено отключение данной системы - при грамотной работе водитель может добиться лучших результатов и получить при этом море удовольствия от активной езды. Если же вы не хотите пребывать в состоянии ковбоя, сидящего на необъезженном скакуне, включайте систему и расслабьтесь - состояние плавания на барже вам гарантировано.

Дальнейшее слияние и совершенствование антиблокировочной и антипробуксовочной систем привело к появлению систем стабилизации. Такая система комплексно воздействует и на тормоза, и на двигатель. Она не только выполняет описанные выше функции, но и выборочным подтормаживанием отдельных колес, вызывает появление сил, которые противодействуют возникновению заносов. Те же функции используются и для повышения проходимости - специальное подтормаживание не позволяет одному из колес буксовать в то время, как другие бездействуют.

Что нас ждет в будущем

Развитие подобных систем продолжается и двигается в 2-х основных направлениях. Первое - увеличение и совершенствование датчиков, т.е. чем больше и точнее поступает информация о состоянии автомобиля и окружающей среды, тем более полные выводы можно из этого сделать. Современные автомобили буквально напичканы разными датчиками.

Причем, если раньше эти датчики анализировали только состояние самого автомобиля, то теперь они начинают осмыслять то, что происходит вокруг.

Второе направление - совершенствование контроля над отдельными частями автомобиля. Здесь, как это ни печально, оказалось, что самое ненадежное звено в автомобиле - это прокладка между рулем и сидением, т.е. мы с вами, - водители. Поэтому автомобильные инженеры изо всех сил стараются отобрать у водителя возможность делать «что ему вздумается».

  • На многих автомобилях уже нет механической связи между педалью газа и дроссельной заслонкой, да и дроссельной заслонки, собственно, уже нет. Есть только датчик, который фиксирует ваши действия - степень нажатия на педаль газа, и компьютер, который думает, согласиться с вами или нет.
  • На подходе рулевое управление, в котором вы не будете поворачивать колеса, а будете просить компьютер повернуть колеса в нужном направлении.
  • То же и с тормозами, причем датчики сближения и ждать не будут, пока вы соизволите надавить на педаль тормоза. Mercedes ведет активные эксперименты по управлению автомобиля при помощи одного единственного джойстика… Все это одним словом называется «управление по проводам».
  • А уж когда удастся на каждое из колес поставить свой электродвигатель-тормоз, тогда с автомобилем можно будет сделать вообще все, что вздумается. Но вздумается не вам, а компьютеру.

Добавим спутниковое слежение и информационную связь с дорогой - и вы смело можете садиться не на переднее сидение, а ложиться в багажник.

Послесловие

Пока еще это «светлое» будущее не наступило, водителю все же требуется вспоминать о законах физики. А они просты - никакая электроника не уменьшает массу автомобиля и не убирает лед из-под колес. Современная электроника - это лишь помощники на случай небольших погрешностей водителя.

Очень хорошо сделал Mercedes - когда срабатывает система ESP, на панели загорается треугольник с восклицательным знаком. Не зелененькая голова с улыбкой (мол, все оk), а желтый треугольник с восклицательным знаком - поаккуратнее мол там, ты уже ошибся, ошибаться осталось недолго!

Грамотное и вдумчивое вождение автомобиля, которое подстраховывает современная электроника - это истинное наслаждение за рулем и возможность реализовать весь потенциал автомобиля. Неграмотное и халатное вождение автомобиля, с которым пытается бороться современная электроника - это езда на грани фола, до первой серьезной ошибки, когда уже ничто не поможет.

Введение

В настоящее время техническая оснащенность автомобиля различными электронными системами значительно возросла. Последние достижения в области электроники и микропроцессоров способствовали повышению надежности, эргономичное TM и безопасности автомобиля.

Доля электроники в автомобилях постоянно увеличивается - в 2000 году на нее приходилось 22% стоимости автомобиля, а в 2010 - 35%.

Еще более возрастает роль электронных и микропроцессорных систем, которые во многом определяют активную и пассивную безопасность автомобиля. Так 1 июля 2004 года в Европейском союзе вступило в силу коллективное обязательство автопроизводителей не поставлять на рынок автомобили без антиблокировочных систем. Как ожидается, вскоре аналогичное решение будет принято и по подушкам безопасности.

Не меньшее внимание уделяется экологическим показателям автомобиля, выполнить которые без микропроцессорного управления силовым агрегатом невозможно.

1. Общие сведения об электронных и микропроцессорных системах автомобиля

Понятие электронной системы является более общим, нежели понятие микропроцессорной системы. В самом общем смысле под электронной системой понимается система, построенная на радиоэлектронных элементах.

Электронная система автомобиля - система (узел) автомобиля, алгоритм функционирования которой определяется принципиальной электрической схемой блока управления или всего узла. При этом технически электронный блок управления (ЭБУ) или весь узел может быть выполнен на дискретных и (или) интегральных радиоэлементах, а изменение алгоритма работы системы или узла невозможно без изменения электрической схемы.

Микропроцессорная система автомобиля - система автомобиля, алгоритм функционирования которой определяется программой процессора электронного блока управления (ЭБУ). Таким образом, в данной системе всегда есть блок управления на основе микропроцессора и для изменения алгоритма работы системы требуется изменить программу микропроцессора.

Основные компоненты электронных и микропроцессорных систем автомобиля.

Современный автомобиль обладает значительным количеством электронных и микропроцессорных систем различного назначения и уровня сложности, что определило разнообразие в элементной базе устройств и технологиях их изготовления.

Рассмотрим основные критерии классификации электронных компонентов автомобиля.

По типу элементов: дискретные и интегральные электронные компоненты.

По типу рабочего сигнала : цифровые и аналоговые компоненты.

По условиям применения: стандартные (универсальные) и специальные компоненты.

Более подробно рассмотрим интегральные микросхемы (ИС), которые в настоящее время являются преобладающими в автомобильной электронике.

В подавляющем большинстве сейчас используются монолитные интегральные микросхемы (1С- integrated circuit), то есть выполненные на едином кристалле полупроводника (чаще кремния) по планарной технологии. Данная технология позволяет производить в микросборке все полупроводниковые элементы, а также пассивные компоненты, такие как резисторы и конденсаторы. Выделяют пять уровней интеграции микросхем:

- низкая (SSI);

- средняя (MSI);

- высокая (LSI);

- сверхвысокая (VLSI);

- ультравысокая (ULSI).

В настоящее время производятся последние три группы интегральных микросхем. Аналоговые интегральные микросхемы чаще всего делятся по назначению: операционные усилители, стабилизаторы напряжения, усилители низкой частоты, компараторы и т. д.

Цифровые интегральные микросхемы имеют, как правило, два критерия классификации:

- по технологии полупроводников: биполярные, на основе полевых транзисторов и гибридные.

- по назначению: логические, триггеры, регистры, шифраторы, мультиплексоры, микросхемы памяти, высокомощные микросхемы.

Отдельным классом цифровых интегральных микросхем стоят микропроцессоры.

Микропроцессор (МП) - это программно управляемое устройство, осуществляющее процесс обработки цифровой информации и управление этим процессом, реализованное в одной или нескольких больших интегральных схемах (БИС).

Микропроцессорная ЭВМ (или микроЭВМ) - это ЭВМ, включающая микропроцессор, полупроводниковую память, средства связи с периферийными устройствами и, при необходимости, пульт управления и блок питания, объединенные одной несущей конструкцией.

В зависимости от способа конструирования микроЭВМ делят на:

- однокристальные, выполненные на одном кристалле,

- одноплатные, реализованные на одной плате,

- многоплатные, когда микропроцессор и основная память располагаются на одной плате, средства связи с периферийными устройствами - на других.

Микропроцессорная система (МПС) - информационная, измерительная, управляющая или другая специализированная цифровая система, включающая микроЭВМ и средства сопряжения с обслуживаемым объектом.

Программное обеспечение МПС (ПО МПС) - совокупность программ, которые находятся в памяти системы и реализуют алгоритм функционирования системы.

2. Системы управления двигателем

2.1 Основные принципы управления двигателем

Автомобильный двигатель представляет собой систему, состоящую из отдельных подсистем: системы топливоподачи, зажигания, охлаждения, смазки ит.д. Все системы связаны друг с другом и при функционировании они образуют единое целое.

Схема двигателя как объекта автоматического управления приведена на рис.2.

Входные параметры (угол открытия дроссельной заслонки j др, угол опережения зажигания q , цикловой расход топлива G т и др.) - это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.

Выходные параметры , называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент Ме, показатель топливной экономичности g е и токсичности отработавших газов (например, содержания СО), а также многие другие.

Кроме входных управляющих параметров, на двигатель во время его работы воздействуют случайные возмущения , которые мешают управлению. К случайным возмущениям можно отнести изменение параметров состояния внешней среды (температура Т, атмосферное давление р, влажность), свойств топлива и масла и т.д.

Для двигателя внутреннего сгорания характерна периодическая повторяемость рабочих циклов. Как объект управления двигатель считается нелинейным, так как реакция на сумму любых внешних воздействий не равна сумме реакций на каждое из воздействий в отдельности. Учитывая, что двигатель в условиях городской езды работает на нестационарных режимах, возникает проблема оптимального управления им. Возможность оптимального управления двигателем на нестационарных режимах появилась с развитием электронных систем управления.

Управление двигателем нельзя рассматривать в отрыве от управления автомобилем. Скоростные и нагрузочные режимы работы двигателя зависят от скоростных режимов движения автомобиля в различных условиях эксплуатации, которые включают в себя разгоны и замедления, движение с относительно постоянной скоростью, остановки.

Водитель изменяет скоростной и нагрузочный режим двигателя, воздействуя на дроссельную заслонку. Выходные характеристики двигателя при этом зависят от состава топливо-воздушной смеси и угла опережения зажигания, управление которыми обычно осуществляется автоматически.

Входные параметры - это те параметры, которые влияют на протекание рабочего цикла двигателя. Их значения определяются внешними воздействиями на двигатель со стороны водителя или системы автоматического управления, поэтому они называются также управляющими.

Выходные параметры, называемые управляемыми, характеризуют состояние двигателя в рабочем режиме. К ним относятся: частота вращения коленчатого вала, крутящий момент, показатель топливной экономичности и токсичности отработавших газов (например, содержания СО), а также многие другие.

2.2 Электронные системы впрыскивания бензина

Применение систем впрыскивания топлива взамен традиционных карбюраторов обеспечивает повышение топливной экономичности и снижение токсичности отработавших газов. Они позволяют в большей степени по сравнению с карбюраторами с электронным управлением оптимизировать процесс смесеобразования. Однако следует отметить, что системы впрыскивания топлива сложнее систем топливоподачи с использованием карбюраторов из-за большего числа подвижных прецизионных механических элементов и электронных устройств и требуют более квалифицированного обслуживания в эксплуатации.

По мере развития систем впрыскивания топлива на автомобили устанавливались механические, электронные и цифровые системы. К настоящему времени структурные схемы систем впрыскивания топлива в основном стабилизировались При распределенном впрыскивании топливо подается в зону впускных клапанов каждого цилиндра группами форсунок без согласования момента впрыскивания с процессами впуска в каждый цилиндр (несогласованное впрыскивание) или каждой форсункой в определенный момент времени, согласованный с открытием соответствующих впускных клапанов цилиндров (согласованное впрыскивание). Системы распределенного впрыскивания топлива позволяют повысить приемистость автомобиля, надежность пуска, ускорить прогрев и увеличить мощность двигателя.

При распределенном впрыскивании топлива появляется возможность применения газодинамического наддува, расширяются возможности в создании различных конструкций впускного трубопровода. Однако у таких систем по сравнению с центральным впрыскиванием больше погрешность дозирования топлива из-за малых цикловых подач.

Идентичность составов горючей смеси по цилиндрам в большей степени зависит от неравномерности дозирования топлива форсунками, чем от конструкции впускной системы. При центральном впрыскивании топливо подается одной форсункой, устанавливаемой на участке до разветвления впускного трубопровода. Существенных изменений в конструкции двигателя нет. Система центрального впрыскивания практически взаимозаменяема с карбюратором и может применяться на уже эксплуатируемых двигателях. При центральном впрыскивании обеспечивается большая точность и стабильность дозирования топлива.

Особенно эффективна в отношении повышения топливной экономичности система распределенного впрыскивания топлива в сочетании с цифровой системой зажигания.

В мировой практике разработкой электронных систем впрыска топлива занимаются многие фирмы, однако наиболее известны в Европе: BOSCH, Siemens, поэтому чаще всего используют их обозначение систем. Общепринятым международным обозначением электронных систем впрыска является Jetronic. В настоящее время в массовом производстве преобладает система под названием LH-Jetronic, которая является системой распределенного впрыска топлива во впускной трубопровод. Применяется как синхронный и асинхронный впрыск топлива. Главной чертой этой системы является термоанемометрический расходомер воздуха, взамен расходомера на основе потенциометра с заслонкой.

2.3 Микропроцессорные системы управления бензиновым двигателем

Сейчас практически отказались производители от отдельных электронных систем впрыска и производят электронные системы управления двигателем (МСУД), объединяющие управление впрыском топлива и зажиганием бензинового двигателя. Такие системы обозначаются Motronic. Производятся на современном этапе три типа систем:

-M-Motronic - микропроцессорная система управления зажиганием и распределенным впрыском топлива;

-ME-Motronic - микропроцессорная система управления зажиганием и распределенным, последовательным впрыском топлива, с X- регулированием и электронным дросселем (система ETC);

-MED-Motronic- микропроцессорная система управления зажиганием и непосредственным впрыском топлива в цилиндры (Direct injection, DI).

Рассмотрим особенности систем ME-Motronic и MED-Motronic.

Система ME-Motronic

Кроме основных своих функций система ME-Motronic выполняет и целый ряд дополнительных функций с разомкнутой и замкнутой системами управления. В качестве примера можно назвать:

-регулирование частоты вращения коленчатого вала на холостом ходу; регулирование коэффициента избытка воздуха (замкнутая система управления);

-улавливание топливных паров; рециркуляция отработавших газов для снижения содержания оксидов азота;

-контроль за работой вспомогательной воздушной системы для снижения содержания углеводородов в отработавших газах;

-автоматическое регулирование скорости движения (круиз-контроль).

Система MED-Motronic

При оснащении бензинового двигателя с искровым зажиганием и непосредственным впрыском топлива системой MED-Motronic расход топлива может быть снижен не менее чем на 20 % по сравнению с двигателем, имеющим впрыск топлива во впускной трубопровод.

При этом может быть достигнут длительный эффект снижения выбросов диоксида углерода (СО2) во время движения автомобиля.

При непосредственном впрыске топлива должна осуществляться возможность скоординированного выбора между вариантами применения неоднородной смеси (послойного заряда) при неполной нагрузке и однородной (гомогенной) смеси при полной нагрузке и наоборот.

Основными требованиями при использовании системы MED-Motronic являются:

-точное дозирование потребного количества впрыскиваемого топлива;

-создание необходимого давления впрыска;

-управление моментом впрыска;

-впрыскивание топлива непосредственно в камеру сгорания.

Так же должны быть согласованы требования к величине крутящего момента двигателя, с тем, чтобы затем имелась возможность проведения необходимых регулировочных операций на данном двигателе.

Принцип работы электронной системы управления двигателем

Электронная система управления двигателем (ЭСУД) может быть системой управления как бензиновым, так и дизельным двигателем. Указанная система управления состоит из входных датчиков, ЭБУ, а также исполнительных устройств.

Развитие электронных систем управления ДВС стало возможным благодаря активному внедрению в конструкцию силовых агрегатов электронных компонентов. Еще одним фактором развития электронного управления стали экологические нормы и стандарты, полного соответствия которым можно добиться только при условии высокоточной работы управляющих систем.

На раннем этапе система управления двигателем представляла собой решение, в котором конструктивно были объединены система зажигания и система впрыска топлива. Сегодня ЭБУ двигателем контролирует большое количество систем и механизмов ДВС, среди которых:

  • система впуска;
  • система топливного впрыска;
  • система зажигания;
  • система охлаждения;
  • система EGR;
  • система выпуска;
  • тормозная система и т.д.

Система управления двигателем работает по следующему принципу. В различных механизмах ДВС установлены входные датчики. Среди основных выделяют:

  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик расхода воздуха (сегодня используется массовый воздухорасходомер ДМРВ);
  • датчик давления топлива;
  • датчик положения распредвала (датчик Холла, ДПРВ);
  • датчик коленвала;
  • датчик детонации;
  • кислородные датчики;
  • датчики температуры ОЖ, моторного масла, воздуха и т.д.

Указанные датчики осуществляют замер параметров работы мотора, после чего происходит преобразование в электрический сигнал. На современных автомобилях сигнал может быть как аналоговым, так и цифровым. Данные от датчиков являются основой, которая позволяет ЭБУ контролировать работу двигателя на разных режимах. Показания отдельно взятых датчиков могут служить для управления как одной, так и одновременно несколькими системами силового агрегата.

В конструкциях автомобилей все более широкое применение находят электронные системы управления. По прогнозам специалистов в ближайшее десятилетие только 15…18 % изменений конструкции автомобилей будет отдано механике, основные изменения будут касаться электронных систем управления автомобилем.

При упрощенном рассмотрении электронной системы управления автомобилем можно выделить четыре основных блока (рис. 1): входные сигналы - датчики, системы передач данных, электронный (электронные) блок (блоки) управления (ЭБУ), исполнительные механизмы (ИМ).

Рис. 1.

Электронный блок управления является самым сложным прибором систем управления двигателем или отдельных систем автомобиля и координирует их работу. Основу блока составляет центральный процессор или микрокомпьютер.

ЭБУ получает электрические сигналы от датчиков или генераторов в ожидаемом интервале значений, оценивает их, затем проводит вычисление пусковых сигналов для исполнительных устройств (приводов).

Входные сигналы могут быть цифровыми, аналоговыми и импульсными (рис. 2).


Рис. 2.

Цифровые входные сигналы - это входные сигналы, которые имеют только два состояния: «высокий уровень» и «низкий уровень». Примеры цифровых входных сигналов: сигналы включения/ выключения, сигналы цифровых датчиков (например, импульсы от датчика Холла). Такие сигналы обрабатываются непосредственно микропроцессором.

Аналоговые входные сигналы в пределах заданного диапазона принимают значения напряжения. Физические величины, которые Н - высокий уровень сигнала; L - низкий уровень сигнала; FEPROM - программируемая память (постоянное запоминающие устройство, ПЗУ); EEPROM - постоянная память (ПМ); RAM - оперативная память (ОП); A/D - аналогово-цифровой преобразователь (АЦП); CAN - электронная цифровая шина данных рассматриваются как аналоги измеренных значений напряжения: массовый расход воздуха на впуске, напряжение аккумуляторной батареи, давление во впускном коллекторе и давление наддува, температура охлаждающей жидкости и воздуха на впуске. Аналогово-цифровой преобразователь (АЦП) преобразует эти значения в цифровые сигналы, с которыми затем микропроцессор проводит расчеты.

Разновидностью аналоговых сигналов являются быстро изменяющиеся сигналы напряжения, называемые импульсными входными сигналами . Импульсные входные сигналы от индуктивных датчиков, содержащие информацию о частоте вращения и положении вала (по метке), обрабатываются в их собственном контуре в ЭБУ. Здесь ложные импульсы подавляются, импульсные сигналы преобразуются в цифровые прямоугольные сигналы.

Для работы микропроцессору требуется программа, которая хранится в программируемой (перезаписываемой ) памяти (постоянное запоминающие устройство - ПЗУ, или FEPROM). Эта память предназначена только для считывания информации. Она также содержит специальные фиксированные данные (индивидуальные данные, характеристические и программируемые матрицы, значения поправочных коэффициентов и данные, необходимые процессору для расчетов длительности управляющих импульсов форсунок, угла опережения зажигания и т.п.), которые не могут быть изменены во время управления автомобилем. Перезаписывающая память является энергонезависимой, т.е. вся занесенная в нее информация сохраняется при отключении энергопитания сколь угодно долго.

Оперативная память (RAM) служит для хранения таких изменяющихся данных, как численные значения сигналов. Для правильной работы ОП требуется постоянное электрическое питание. При отключении зажигания или выключателя пуска ЭБУ выключается и, следовательно, теряется вся память (так называемая испаряющаяся память). Адаптирующие значения величин, т.е. те, которые «обучаются» системой во время работы и касаются работы двигателя рабочих режимов, должны быть восстановлены при включении ЭБУ в работу.

Данные, которые нельзя терять (например, коды иммобилайзера и данные кодов неисправности), должны храниться в устройстве EEPROM (ПМ) - данные в ПМ не теряются даже в случае отсоединения аккумуляторной батареи.

Блок текущего контроля ЭБУ оснащается следящим контуром, который встроен в специализированную интегральную схему, которая оснащается повышенной оперативной памятью (extra RAM), усовершенствованными входными и выходными блоками и может генерировать и передавать сигналы широтно-импульсной модуляции. Микропроцессор и блок текущего контроля следят друг за другом и, как только обнаруживается неисправность, любой из них может выключить подачу топлива независимо от другого.

Используя выходные сигналы , микропроцессор запускает задающие каскады. Выходные сигналы обычно являются достаточно мощными, чтобы непосредственно управлять исполнительными устройствами или реле. Задающие каскады защищены от короткого замыкания на массу или аккумуляторную батарею и разрушения при электрической перегрузке. Такие нарушения в работе вместе с обрывами цепи или неисправностями датчиков определяются контроллером задающих каскадов, затем эта информация передается в микропроцессор. Выходные сигналы могут быть переключающими и сигналами широтно-импульсной модуляции.

Переключающие сигналы используются для включения и выключения исполнительных устройств (например, электровентилятора системы охлаждения двигателя). Сигналы широтно импульсной модуляции (PWM signals ) - это прямоугольные сигналы с постоянным периодом, но переменные по времени (рис. 3). Они могут быть использованы для пуска электромагнитных приводов (например, клапана системы рециркуляции ОГ - отработавших газов).

Встроенная диагностика . Одной из важных функций блока управления является непрерывная самодиагностика не только входных и выходных цепей компонентов, но и некоторых показателей внутреннего состояния системы. В современных ЭБУ осуществление самодиагностики занимает до 50 % ресурсов микрокомпьютера. В случае нахождения неисправностей в какой-либо цепи (например, отсутствие или несоответствие заданному уровню сигнала одного из датчиков) микропроцессор записывает соответствующий данной неисправности цифровой код в специальную область памяти, а для того чтобы получить информацию о характере неисправности, необходимо осуществить считывание кода из памяти компьютера.

Рис. 3. а - постоянный период; b - длительность сигнала

ЭБУ постоянно контролирует исправность всех его компонентов, но ошибка помимо своего информационного значения несет флаг статуса, т.е. ошибки могут быть статические (текущие) и случайные (спорадические, накопленные).

Каждый раз при включении зажигания ЭБУ начинает анализировать работу своих датчиков и исполнительных устройств. Такой анализ длится все время, пока работает двигатель. При обнаружении дефекта ЭБУ фиксирует неисправность, выставляет код ошибки и использует аварийную ветвь программы управления. В случае если какой-либо входной сигнал отсутствует или заведомо неправильный, блок управления рассчитывает и использует вместо него некоторое теоретическое значение, что позволяет ему продолжать дальнейшее управление двигателем. Например, при выходе из строя датчика давления во впускном коллекторе для определения времени впрыска используется значение, рассчитанное исходя из частоты вращения коленчатого вала и положения дроссельной заслонки.

После выключения зажигания блок управления сохраняет код в ОЗУ.

2. Системы передачи данных

Современное автомобилестроение интенсивно внедряет инновационные технологии в системах управления. Общая тенденция в области автоматизации автомобилей состоит в замене традиционной централизованной системы управления распределенной системой управления путем соединения блоков управления интеллектуальных датчиков и исполнительных механизмов. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностирования автомобилей и снижением надежности. Увеличивающееся применение электронных систем управления автомобилей с обратной и без обратной связи требует, чтобы индивидуальные ЭБУ работали в сети друг с другом. Такие системы управления включают:

  • управление коробкой передач;
  • электронное управление двигателем или регулирование подачи топлива;
  • антиблокировочную систему тормозов (ABS);
  • противобуксовочную электронную систему (TCS);
  • электронную систему курсовой устойчивости (ESP);
  • систему управления тормозным моментом (MSR);
  • электронный иммобилайзер (EWS);
  • бортовой компьютер и т.д.

Обмен информацией между системами уменьшает общее количество необходимых датчиков и улучшает управление отдельными системами. Интерфейсы систем передачи информации, проектируемые для применения в автомобилях, могут быть подразделены на четыре категории:

  1. обычная передача данных;
  2. последовательная цифровая передача данных, т.е. сеть контроллеров (CAN);
  3. широкополосные шины передачи данных с временным разделением каналов (шина FlexRay);
  4. оптическая передача данных (шина типа МОSТ).

Обычная передача данных в автомобиле (рис. 4) характеризуется тем, что каждый сигнал имеет свой собственный канал связи (провод). При этом с каждой дополнительной информацией возрастает также число проводов и количество контактов на блоке управления, поэтому подобный тип передачи информации оправдывает себя только в случае ограниченного объема передаваемых данных.

Рис. 4.

Увеличение обмена данными между электрическими компонентами автомобиля уже достигли таких объемов, что дальнейшие попытки управления через обычные интерфейсы уже не удовлетворяют современные системы управления, поэтому стали применяться шины передачи данных.

В связи с возросшими требованиями передачи информации в автомобильных системах управления, вместо обычной электропроводки в современных автомобилях используется последовательная цифровая передача данных . Все более широкое распространение находят электронные цифровые шины данных CAN (Controller Area Network). Цифровая передача данных значительно надежнее обычной аналоговой, так как шина лучше защищена от помех, контакты надежно изолированы от внешних воздействий.

Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники. CAN-шина облегчает диагностику и ремонт вышедших из строя компонентов системы управления автомобилем. Универсальная проводка подходит и для разных комплектаций одного автомобиля - дополнительные устройства просто подключаются к нужным разъемам.

В зависимости от приоритетов и требований к скорости передачи данных шина CAN может быть одноили двухпроводной.

Если для работы систем достаточно низкой скорости передачи данных, то используются шины с одним проводом связи, если скорость передачи должна быть высокой - шины с двумя проводами связи. Второй провод используется для проверки правильности переданной модулем управления информации и для самоконтроля модуля. Данные передаются по обоим проводам одновременно. Сигнал на первом проводе представляет собой перевернутое повторение сигнала, передаваемого по второму проводу.

Все связанные через шину CAN блоки управления подключаются к ней параллельно. Один из проводов шины CAN называется верхним - CAN H (High), другой - нижним - CAN L (Low). Два невзаимозаменяемых скрученных провода (рис. 5) образуют пару (Twisted Pair).

Рис. 5.

Скручивание проводов производится для того, чтобы ослабить помехи электромагнитного характера, а также излучающие помехи. Скручивание позволяет также устранить излучение шины, способное создать помехи в работе других устройств.

По проводу CAN H информация передается в виде электрических сигналов напряжением от 2,5 до 3,5 В, а по проводу CAN L - от 1,5 до 2,5 В (рис. 6). Разность напряжений, равная нулю, дает уровень логического нуля, а разность напряжений 2,0 В - уровень логической единицы.

Рис. 6.а - напряжение; б - разность напряжений; А, С - логический уровень равен 0; B - логический уровень равен 1

CAN - мультимастерная шина, т.е. без центрального управляющего устройства. Все подключаемые к центральному или центральным блокам электронные блоки разных систем (или контроллеры) равноправны - любой имеет доступ к передаваемым данным и может сам их передавать.

CAN-шина относится к типу последовательных; передача данных в шине выполняется по протоколу в виде обмена сообщениями между блоками управления через очень короткие промежутки времени. Протокол состоит из последовательности бит* информации, передающихся друг за другом. Число бит в протоколе передачи данных зависит от размера поля данных.

* Бит - базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равно вероятных исхода (да или нет).

Данные передаются бит за битом и в такой же последовательности принимаются. Биты составляют отдельные поля (рис. 7), из них складываются так называемые кадры - основные информационные единицы.

Начало кадра обозначает начало протокола передачи данных.

Арбитражное поле используется для обозначения приоритета протокола передачи данных. Например, если двум блокам управления требуется отправить сообщения одновременно, то первым отправляет сообщение в блок управления с более высоким приоритетом. Кроме того, арбитражное поле используется для определения содержания сообщения (например, частоты вращения коленчатого вала двигателя).

Рис. 7.1 - начало кадра (1 бит); 2 - арбитражное поле (11 бит); 3 - неиспользуемое (запасное) поле (1 бит); 4 - поле управления (6 бит); 5 - поле данных (64 бита); 6 - поле обнаружения ошибок CRC (16 бит); 7 - поле сигнала приемника передатчику ACK (2 бита); 8 - конец кадра (7 бит)

В поле управления (контрольное поле ) в виде кода записывается количество элементов информации в поле данных. Этим обеспечивается возможность для каждого приемника проверить, были ли получены все необходимые данные.

В поле данных передаются элементы данных, являющиеся важными для других блоков управления. Оно содержит больше всего информации: от 0 до 64 бит (от 0 до 8 байт).

Поле CRC используется для обнаружения ошибок в процессе передачи данных.

Поле ACK содержит сигнал приемника передатчику о том, что протокол данных был успешно выполнен. В случае обнаружения ошибки информация об этом немедленно поступает в передатчик и отправка сообщения повторяется.

Конец кадра предназначен для проверки передатчиком протокола данных и отправки приемнику подтверждения о его безошибочном выполнении. В случае обнаружения ошибки передача данных немедленно прекращается, а затем выполняется повторно. После этого протокол передачи данных считается выполненным.

Один кадр может включать несколько параметров, например, кадр, выдаваемый ЭБУ системы впрыска топлива, может состоять из следующих параметров:

  • частота вращения коленчатого вала двигателя;
  • средний эффективный крутящий момент двигателя;
  • заданная водителем скорость движения;
  • состояние системы круиз-контроля (включена или не включена);
  • разрешение на включение компрессора кондиционера;
  • величина крутящего момента двигателя без учета воздействия автоматической коробки передач.

Рис. 8. 1 - идентификационный код послания (11 бит); 2 - содержание послания (до 8 × 8 бит); 3 - контрольная сумма (16 бит); 4 - подтверждение приема послания (2 бит)

Некоторые кадры выдаются периодически (например, кадр системы впрыска топлива - через каждые 10 с), другие - при наступлении какого-либо события (например, кадр, генерируемый ЭБУ подушек безопасности, выдается в случае удара, при этом выключается топливный насос, происходит разблокировка замков дверей и запрещается блокировка рулевой колонки).

Обмениваемая информация состоит из отдельных посланий, которые могут быть отправлены и получены каждым из блоков управления. Каждое из посланий (рис. 8), составленное согласно протоколу, содержит данные о каком-либо физическом параметре, например, о частоте вращения коленчатого вала.

Примером идентификационного кода послания может быть: двигатель, частота вращения коленчатого вала двигателя. В этом же послании могут содержаться и другие данные (например, указания о холостом ходе, передаче крутящего момента и других режимах работы двигателя). При этом величина частоты вращения представляется в двоичной форме, т.е. как последовательность нулей и единиц или бит (рис. 9). Например, значение частоты вращения двигателя 1800 об/мин может быть представлено как двоичное число 00010101.

Рис. 9.

Пример упрощенной передачи данных на примере угла положения дроссельной заслонки, который показывает, как строится информация, дан в табл. 1. Положение дроссельной заслонки от 0° до 102° передается с шагом 0,4° 8 битами, таким образом возможно 256 вариантов комбинаций битов.

Таблица 1. Зависимость изменения данных в шине от положения (угла) дроссельной заслонки

В современных автомобилях, как правило, применяются три вида шин, работающие с разными скоростями (рис. 10). Наиболее важные устройства и системы (антиблокировочная система тормозов, система курсовой устойчивости и др.) подключаются к скоростной магистрали с пропускной способностью 500…1000 Кб/с, практически обеспечивающей работу системы в реальном времени. Менее быстрые и важные приборы - система «Комфорт» или информационно-командная система (радио, монитор на центральной консоли, система навигации и кондиционирования) - завязаны на вторую шину со скоростью 95,2…100,0 Кб/с. Для остальных «медленных» устройств - система «Комфорт» (дверных замков, систем освещения, стеклоподъемников) - служит третья шина со скоростью 33,3…100,0 Кб/с.

Рис. 10.(на примере автомобиля Polo модели 2002 г.): 1 - шина наиболее важных устройств; 2 - шина информационно-командной системы; 3 - шина системы комфорта; БУ - блок управления; ЗУ - запоминающее устройство

Вместо ключа зажигания в автомобилях, оборудованных CAN-шинами, используют электронный брелок, который взаимодействует с блоком управления двигателем через цифровую шину. Возросшие требования к скорости передачи и безопасности данных требуют применения широкополосных шин передачи данных с временным разделением (временным управлением) каналов (для сравнения: CAN представляет собой событийно-управляемую шину данных).

Шина FlexRay - это последовательная, детерминистическая и устойчивая к сбоям шина передачи данных для применения в автомобиле; скорость передачи данных составляет 10 Мб/с, что в 20 раз превышает скорость передачи по высокоскоростной шине CAN (500 Кб/с).

Важной особенностью FlexRay является также гарантированное время реакции или латентный период реагирования, т.е. время, которое требуется на прохождение сообщения от отправителя до получателя. В связи с этим говорят также о детерминистической (предопределенной, регламентированной) передаче. Это означает, что данные поступают к адресату или адресатам в строго определенный или предварительно заданный момент времени (возможно применение в режиме реального времени).

Шина FlexRay двухпроводная: плюсовой провод обозначают красным цветом, минусовой - синим. Уровень напряжения на обоих проводах колеблется (рис. 11) от минимума (2,2 В) до максимума (2,8 В) (для сравнения в высокоскоростной шине CAN 1,5…3,0 В). Уровень разностного напряжения составляет не менее 600 мВ (в высокоскоростной шине CAN 2 В).

Рис. 11.

FlexRay работает с тремя состояниями сигнала:

  • холостой сигнал - уровень напряжения обоих проводов шины составляет 2,5 В (режим холостого хода). Рецессивный сигнал означает, что уровень напряжения может быть превышен (перезаписан) другим блоком управления;
  • 1 - плюсовой провод имеет высокий, а минусовой - низкий доминирующий уровень напряжения;
  • 0 - плюсовой провод имеет низкий, а минусовой - высокий доминирующий уровень напряжения.

Доминирующий сигнал означает, что этот уровень напряжения не может быть превышен (перезаписан) другими блоками управления.

При таких параметрах уровня напряжения время передачи 1 бит составляет 100 нс (наносекунд) (для сравнения в высокоскоростной шине 2000 нс).

Центральный блок информационно-командной системы может соединяться с процессором навигационной и других систем посредством оптического кабеля - шины типа МОSТ (Media Oriented Systems Transport). Это необходимо для защиты линии передачи данных от помех. Для передачи данных через оптический кабель следует преобразовать аналоговую информацию в серии световых импульсов, которые затем могут распространяться по стеклянным волокнам кабеля. Длина световых волн меньше длины радиоволны, поэтому они не создают электромагнитных помех и сами являются невосприимчивыми к таковым.

Вокруг любого проводника, по которому проходит электрический ток (рис. 12), возникают поля, поэтому проложенные параллельно или перекрещивающиеся проводники тока создают взаимные помехи. Помехи создаются также электромагнитными волнами, генерируемыми, например, мобильным телефоном. При использовании волоконно-оптической связи такие помехи отсутствуют.

Рис. 12. Передача тока по волоконно-оптическому (а) и металлическому (б) проводникам: 1 - цифровая информация; 2 - оптический кабель; 3 - аналоговая или цифровая информация; 4 - металлический проводник; 5 - электромагнитное поле проводника

Преимуществом современных волокно-оптических систем, кроме отсутствия помех, является также скорость передачи данных, достигающая 21,2 Мб/с, что позволяет передавать информацию в виде цифрового сигнала. Такая связь применяется при приеме аудио- и видеопередач, что требует скорости передачи данных порядка 6 Мб/с и больше, в то время как шина CAN при большом количестве жил в жгуте проводов может передавать данные со скоростью не более 1 Мб/с.

Светодиод - один из основных компонентов волокно-оптической системы (рис. 13) предназначен для преобразования сигнала по напряжению в световой сигнал. Длина волны выработанных световых сигналов около 650 нм и их видно как красный свет. Световод предназначен для отправки световых волн, вырабатываемых в передатчике одного блока управления, на приемник другого блока управления. Фотодиод предназначен для преобразования световых волн в сигналы по напряжению.

Рис. 13.1 - световод; 2 - фотодиод; 3 - светодиод; 4 - трансивер

Недостатком волокно-оптической системы является требование плавных изгибов; радиус изгиба световода не должен превышать 25 мм.

Шина типа MOST представляет шину последовательной передачи данных (аудио- и видеосигналов, голосовых сигналов) по оптическому кабелю (рис. 14). С точки зрения физического исполнения в случае шины MOST речь идет о кольцевой структуре (топологии) сети. Шина типа MOST может включать до 64 устройств.

Рис. 14. Шина типа MOST (на примере Touareg 2011 Volkswagen): 1 - ЭБУ в комбинации приборов; 2 - диагностический интерфейс шин данных; 3 - ЭБУ информационной электронной системы; 4 - ТВ-тюнер; 5 - DVD-чейнджер; 6 - головное устройство аудиосистемы; 7 - ЭБУ цифровой аудиосистемы

Устройство ЭСАУ двигателем.

Ведущий производитель систем впрыска фирма Bosch.

Системы L-Jetronic - это система распределенного нефазированного впрыска топлива рис. 6.3. Она состоит из: 1 - топливный бак; 2 - 3 - топливный. фильтр; 4 - 5- форсунка; 6 - топливная рампа с регулятором давления топлива; 7- впускной трубопровод; 8- клапан холодного пуска; 9-датчик положения дроссельной заслонки; 10- датчик расхода воздуха; 11 - датчик кислорода (λ-зонд); 12 - термо­реле; 13 - 14 - 15- регулятор добавочного воздуха (регулятор холо­стого хода); 16 -аккумуляторная батарея; 17- выключатель зажигания.

Топливо из бензобака 1 насосом 2 через фильтр 3 подается под давлением 250 кПа в топливную рампу и распределяется по форсункам 5 . На конце топливной рампы расположен регулятор давления поддерживающий разность давления в рампе и впускном коллекторе на уровне 0,5 атм. Т.о, количество подаваемого топлива определяется дли­тельностью открытия форсунки. Остатки топлива возвращаются в бак по сливной магистрали. В БУ 4 поступают сигналы от датчика расхода воздуха 10, датчика положения дроссельной заслонки 9 по которым определяет нагрузка двигателя. Датчик положения дрос­сельной заслонки позволяет различать режим ХХ и полной нагрузки. Информация о частоте вращения КВ двигателя поступает от датчика-распределителя системы зажи­гания. Для обогащения смеси при пуске холодного двигателя ис­пользуется клапан холодного пуска 8, который управляется термо­реле 12. Термореле обеспечивает 8 с работы клапана при темпе­ратуре -20°С. Датчик температуры двигателя 13 подключенный к БУ позволяет обогащать смесь на режиме прогрева двигателя.

Управление частотой вращения на режиме ХХ осу­ществляется регулятором добавочного воздуха 15 с заслонкой управляемой биметаллической пластиной. Для корректировки качества рабочей смеси используется датчик кислорода 11.

Система L3-Jetronic (рис.6.4) является модификацией представленной системы. Отличие от L-Jetronic - БУ выпол­ненный в одном корпусе с датчиком расхода воздуха и располо­женный в моторном отсеке.

Конфигурация системы: 1 - топливный бак; 2 - электрический топливный насос; 3 - топливный фильтр; 4 - форсунка; 5 - топливная рампа; 6 - регулятор давления топ­лива; 7- впускной трубопровод; 8 - датчик положения дроссельной за­слонки; 9- датчик расхода воздуха; 10- электронный блок управления; 11 - 12 - датчик температуры двигателя; 13 - датчик-распределитель системы зажигания; 14 - регулятор добавочного воздуха (регулятор холостого хода); 15- аккумуляторная батарея; 16- выключатель зажигания



В системе используется алгоритмы диагностики датчиков и «усеченного» режима работы. В системе отсутствует клапан холод­ного пуска. Обогащение смеси при пуске холодного двигателя осуществляется увеличением подачи топлива через ос­новные форсунки.

Система LH-Jetronic (рис.6.5). Нагрузка двига­теля определяется датчиком массового расхода воздуха термоанемометрического типа. В отличие от датчика системы L-Jetronic, опре­деляющего объем проходящего воздуха этот датчик определяет непосредственно массу воздуха, и не требует дополнительной кор­ректировки по его плотности.

Рис. 6.5. Система LH-Jetronic:

Система представляет собой: 1 - топливный бак; 2- электрический топливный насос; 3 - топливный фильтр; 4 5 -форсунка; 6 - топливная рампа; 7 8- впускной трубопровод; 9-датчик положения дроссельной заслонки; 10 -датчик массового расхода воздуха; 11- датчик кислорода (λ - зонд); 12 - датчик температуры двигателя; 13 -датчик-распределитель системы зажигания; 14 - поворотный регулятор холостого хода; 15- аккумуляторная батарея; 16- выключатель зажигания

Для регулировки частоты вращения коленчатого вала на ХХ в системе LH-Jetronic используется поворотный клапан с приводом от реверсивного электродвигателя (трехпроводной). БУ периодически переключает направление вращения электродвига­теля, что предотвращает заброс клапана в любую из крайних пози­ций. Требуемое положение клапана регулируется изменением соотношения времени включения электродвигателя в различных на­правлениях.

Система KE-Jetronic (рис.6.6), является прототипом гидромеханической системы K-Jetronic, дополненной ЭБУ и датчи­ком кислорода. Система включает в себя: 1 - топливный бак; 2 - электрический топливный насос; 3 - топливный аккумулятор; 4 - топливный фильтр; 5 - регулятор начального давления; 6 - форсунка; 7 - впускной трубопровод; 8- клапан холодного пуска; 9 -дозатор-распределитель топлива; 10- датчик расхода воздуха; 11 - электрогидравлическое управляющее устройство; 12- датчик кисло­рода (λ -зонд); 13- термореле; 14 - датчик температуры двигателя; 15 - датчик-распределитель системы зажигания; 16- регулятор добавоч­ного воздуха (регулятор холостого хода); 17- электронный блок управле­ния; 18 - датчик положения дроссельной заслонки; 19 - аккумуляторная батарея; 20- выключатель зажигания.



В БУ поступают сигналы о положении паруса рас­ходомера, крайних положениях дроссельной заслонки, частоте вращения двигателя, температуре охлаждающей жидкости и со­держании кислорода в отработавших газах. Воздействие БУ на со­став рабочей смеси осуществляется с помощью электрогидравли­ческого управляющего устройства закрепленного на дозаторе-распределителе топлива (рис. 6.7, где: 1 - парус расходомера; 2 - дозатор-распределитель топлива; 3 - поступ­ление топлива от регулятора начального давление; 4 - подача топлива к форсункам; 5 - возврат топлива в регулятор начального давления; 6 - жиклер; 7 - верхняя камера дифференциального клапана; 8- нижняя камера дифференциального клапана; 9 - диафрагма; 10 - регулятор дав­ления; 11 - управляющая пластина; 12 - выпускной канал; 13 - электромагнит; 14 - воздушный зазор). Так для обогащения смеси по сигналу от БУ управляющая пластина 11 закрывает выпускной ка­нал 12 тем самым, снижая давление в нижних камерах дифферен­циального клапана 8. Мембраны 9 прогибаются вниз, и количество топлива поступающего к форсункам 4 увеличивается. Управляющее устройство сконструировано таким образом, что при выходе из строя цепи электромагнита будет обеспечиваться стехиометрический состав смеси и двигатель сохранит работоспособность.

Система центрального впрыска Mono-Jetronic.

Cистема имеет одну форсунку, расположенную перед дроссельной заслонкой, рис.6.8,где 1 - топливный бак; 2 - топливный насос; 3 - фильтр; 4 - регулятор давления топлива; 5 - форсунка; 6 - датчик темпе­ратуры воздуха; 7 - электронный блок управления; 8 - ЭП дроссельной заслонки (регулятор ХХ); 9 - потенциометрический датчик положения дроссельной заслонки; 10 - клапан продувки адсорбера; 11 - угольный адсорбер; 12- датчик кислорода (λ - зонд); 13 - датчик температуры двигателя; 14 - датчик-распределитель системы зажигания; 15 -аккумуляторная батарея; 16- выключатель зажигания; 17 - реле; 18 -диагностический разъем; 19 -устройство центрального впрыска.

Качество смеси задается длительностью импульса открытия фор­сунки. Топливо подается под более низким давлением, нежели в описанных системах - 0,1 МПа. Измерения расхода воздуха система не произво­дит. Количество топлива вычисляется:

· по положению дроссельной заслонки;

· частоте вращения КВ.

ЭБУ обрабатывает информацию от датчика положения дроссельной заслонки, датчи­ка-распределителя системы зажигания, датчиков температуры воз­духа и ОЖ, а также датчика кислорода.

Топливно-воздушная смесь обогащается при холодном пуске и прогреве двигателя увеличением длительности цикла топливоподачи. Минимальная частота вращения в режиме ХХ поддерживается путем изменения положения дроссельной заслон­ки с помощью шагового электродвигателя.

При средних нагрузках и прогретом двигателе подача топлива корректируется обратной связью по датчику кислорода.

Полное открытие дроссельной заслонки переводит БУ в режим обогащения рабочей смеси. Для обеспечения приемистости авто­мобиля БУ определяет ускорение перемещения педали управления дроссельной заслонкой и адекватно изменяет подачу топлива.

В режиме принудительного ХХ система работает по общепринятой схеме.

Для ограничения выделения углеводородов (СН) из топливного бака в используется система улавливания паров бен­зина, к которой относятся емкость с активированным углем - ад­сорбер 11 и электромагнитный клапан продувки адсорбера 10. Па­ры бензина из топливного бака поступают в адсорбер. При работе двигателя БУ открывает клапан продувки адсорбера и накопившие­ся пары топлива удаляются во впускной трубопровод. БУ регулиру­ет степень продувки адсорбера в зависимости от режима работы двигателя.

Комплексные системы управления двигателем, Motronic.

Основная функция всех систем Motronic - согласованное управление зажиганием и впрыском топлива. Система обеспечивает:

Регулировку частоты вращения холостого хода;

Поддержание стехиометрического состава смесипо сигналу датчика кислорода;

Управление системой улавливания паров топлива;

Регулирование угла опережения зажигания посигналу датчика детонации;

Рециркуляцию отработавшихгазов для снижения эмиссии ок­сидов азота (NO x);

Управление системой подачи вторичного воздуха для сниже­ния эмиссии углеводородов (СН);

Поддержание заданной скорости движения (круиз-контроль). При более высоких требованиях система может дополняться функциями:

Управление турбонагнетателем, а также изменением конфигу­рации впускного тракта для повышения мощности двигателя;

Управление фазами газораспределения для снижения токсич­ности отработавших газов, расхода топлива и повышения мощно­сти двигателя;

Детонационное регулирование, ограничение частоты вращения и скорости для защиты двигателя и автомобиля.

Система поддерживает работу БУ дру­гих систем автомобиля. Взаимодействуя с АБС и противобуксовочной (ПБС) системами Motronic создает повышенную безо­пасность при езде.

Система ME-Motronic

ME-Motronic (рис.6.9) сочетает в себе систему рас­пределенного фазированного впрыска топлива в зону впускных клапанов и систему зажигания с низковольтным распределением и индивидуальными катушками. Конструкция: 1 - угольный адсорбер; 2 - отключающий клапан; 3 - клапан продувки адсорбера; 4 - датчик давления во впускном коллекторе; 5 - топливная рам­па с форсунками; 6 - свеча зажигания с индивидуальной катушкой; 7 - фазовый дискриминатор; 8- насос вторичного воздуха; 9 - клапан вторичного воздуха; 10 - пленочный датчик массового расхода воздуха; 11- модуль дроссельной заслонки; 12 - клапан рециркуляции; 1 3- датчик детонации; 14 - 15 - датчик темпера­туры двигателя; 16 - датчик кислорода (λ - зонд); 17- электронный блок управления; 18 - диагностический интерфейс; 19- аварийная лампа; 20 - к иммобилайзеру; 21 - датчик давления в бензобаке; 22- погружной электрический топливный насос; 23 - модуль педали управления дроссельной заслонкой; 24 – аккумулятор.

Частота вращения КВ и синхрони­зация системы определяется по сигналу индукционного датчика положения КВ 14. Для определения такта впуска в каждом цилиндре, что необходимо при организации фазированно­го впрыска топлива и зажигания, используется датчик положения распределительного вала - фазовый дискриминатор 7 .

Для расчета нагрузки двигателя используется пленочный датчик массового расхода воздуха 10, датчик давления во впускной трубе 4 , и датчик положения дроссельной заслонки. Основным отличием системы является отсутствие жесткой механической связи между дроссельной заслонкой и педалью, ею управляющей. Положение педали управления дроссельной заслонкой определяется с помо­щью двух закрепленных на ней потенциометров 23. БУ устанавли­вает дроссельную заслонку 11 в оптимальное положение в зависи­мости от нагрузки и других параметров двигателя.

Используется два датчика кислорода 1,. установка датчика после нейтрализатора повышает надежность работы обратной связи по содержанию ки­слорода, так как этот датчик лучше, защищен от загрязнения отра­ботавшими газами. Наличие второго датчика позволяет системе проводить самодиагностику основного датчика стоящего перед нейтрализатором.

БУ имеет интерфейс последовательной передачи данных (CAN) для взаимодействия с БУ других систем автомобиля.

Систе­ма непосредственного впрыска топлива в цилиндры двигателя MED-Motronic рис.6.10, где: 1 -топливо под высоким давлением; 2- топливная рейка (аккумулятору давления); 3 - форсунка; 4 - свеча зажигания с индивидуальной катушкой; 5 - фазовый дискриминатор; 6 - датчик давления топлива; 7 - датчик детонации; 8- датчик положения коленчатого вала; 9 -датчик температуры двигателя; 10 -датчик кислорода (перед катализатором); 11 - трехкомпонентный каталитический нейтрализатор; 12 - датчик температуры выхлоп­ных газов; 13- NО х каталитический нейтрализатор; 14- датчик кислорода (после нейтрализатора)). В сравнении с традиционными системами впрыска бензиновых двигателей, системы непосредственного впрыска позволяют снизить расход топлива до 20% и уменьшить выбросы оксидов углерода.

Топливо непосредственно впрыскивается в цилиндр в любой момент времени с помощью электромагнитных форсунок.

Масса воздуха может свободно регулироваться с помощью электронного модуля дроссельной заслонки. Точное из­мерение массы всасываемого воздуха выполняется с помощью пленочного датчика расхода воздуха.

Состав топливо-воздушной смеси контролируется датчиками ки­слорода в выпускной системе, расположенными перед и после ка­талитического нейтрализатора.

Топливоподкачивающий насос и регулятор дав­ления, расположенные в бензобаке, обеспечивают подачу топлива под давлением 0,35 МПа к насосу высокого давления увеличивающего давле­ние с 0,35 МПа до 12 МПа, после чего топливо поступает в топливную рампу. На топливной рампе расположен ре­гулятор давления, который поддерживает давление в системе во всем диапазоне работы двигателя независимо от количества впры­скиваемого топлива и производительности насоса.

Давление топлива измеряется датчиком, предо­ставляющим собой сварную диафрагму из высококачественной стали с тензорезисторами.

Форсунки высокого давления подсоединя­ются непосредственно к рампе, время начала впрыска и количест­во топлива определяются сигналами от БУ.

Низкое потребление топлива и высокая мощность двигателя достигаются путем организации работы в:

Ø режиме малой нагрузки . При повышении нагрузки увеличивается количество впрыски­ваемого топлива, облако смеси становится бо­лее богатым, что вызвает увеличение содержания вредных веществ в отработавших газах, особенно сажи. Поэтому на высоких нагрузках двигатель переводится на работу на гомоген­ной смеси;

Ø режиме высокой нагрузки . Во время перехода между этими режимами для стабилизации момента необходимо контролировать количество впрыскиваемого топлива, поступающего воздуха и угол опережения зажигания, используется электроуправляемая дроссельная заслонка, как и в ME-Motronic.

Особенностью системы непосредственного впрыска является об­разование оксидов азота (NO x), для уменьшения NO x в выхлопе используется каталитический нейтрализатор аккумулирующего действия.

Электробензонасосы

Электробензонасос постоянно нагнетает топливо из топливного бака. Он может быть встроен непосредственно в топливный бак (погружной) или расположен снаружи (магистральный).

Применяемые в настоящее время погружные насосы (рис. 6.19 и 6.20) смонтированы в баке вместе с датчиком уровня топлива и завихрителем, служащим для отделения пузырьков пара в слив­ном канале. двухступенчатый электробензонасос с шестернями внутреннего зацепления, у которого: 1 - первая ступень (секция с боковым каналом); 2- главная ступень (шес­терни внутреннего зацепления; 3 - якорь; 4 - коллектор; 5 - обратный клапан; 6 – штекер. А на рис. 6.20 изображен вухступенчатый электробензонасос периферийного нагнетания, состоящего из: 1 - всасывающая крышка со штуцером; 2- крыльчатка; 3 - первая ступень(секция с боковым каналом); 4- главная ступень (с периферийным нагнета­нием); 5 - корпус; 6 - якорь; 7 - обратный клапан; 8- крышка подключения со штуцером. Во избежание перегрева при применении магист­ральных насосов, в топливный бак может быть встроен насос подкачки, который подает топливо к главному насосу под малым давлением.

Для обеспечения требуемого давления на любых режимах, к двигателю подается значительно больше топлива, чем он макси­мально расходует. Включение электробензонасоса осуществляется по сигналу от БУ двигателя.

Электробензонасосы состоят из насосной части, электродвига­теля постоянного тока и крышки подключения.

Электродвигатель и насосная часть электробензонасоса имеют общий корпус и постоянно омываются топливом. Это благоприятно сказывается на охлаждении электродвигателя. Отсутствие кисло­рода в корпусе исключает возможность образования взрывоопас­ной смеси. В крышке подключения смонтированы электрические контакты, обратный клапан, нагнетательный и сливной штуцеры. Обратный клапан определенное время сохраняет давление в сис­теме после отключения электробензонасоса во избежание образо­вания паровых пробок. Дополнительно в крышке подключения мо­жет быть установлено помехоподавительное устройство.

В зависимости от требований к системам применяются насосы различных принципов действия (рис. 6.21, а - роликовый насос; б - периферийный насос; в - шестеренныйнасосвнутреннего зацепления; г - насос с боковым каналом).

Объемные насосы. Роликовые насосы и шестеренчатые насо­сы внутреннего зацепления относятся к группе объемных насосов.

Действие насоса состоит в том, что вращающиеся камеры ме­няющейся величины открывают впускной канал и за счет увеличе­ния камеры засасывают топливо. Когда достигается максимальное заполнение, впускной канал закрывается и открывается нагнета­тельный канал. Посредством уменьшения камер топливо выталки­вается. В роликовых насосах камеры образуются за счет вращаю­щихся роликов, находящихся в сепараторе. Под влиянием центро­бежной силы и топливного давления они прижимаются к эксцентри­ческой поверхности статора. Эксцентриситет между сепаратором и статором обуславливает увеличение и уменьшение объема камер.

Шестеренчатый насос внутреннего зацепления состоит из одной внутренней приводной шестерни, находящейся в зацеплении с экс­центрично установленным ротором, который имеет на один зуб больше. Боковые стороны зуба при вращении образуют в своих про­межутках меняющиеся камеры. Роликовые насосы могут применять­ся при давлении топлива до 650 кПа, шестеренчатый насос внутрен­него зацепления до 400 кПа, что вполне достаточно для использова­ния в системах впрыска топлива во впускной трубопровод.

Лопастные насосы. К лопастным насосам относятся перифе­рийные и насосы с боковым каналом. В них топливо ускоряется лопастями крыльчатки и вытесняется в один канал. Периферийные насосы отличаются от насосов с боковым каналом большим коли­чеством лопастей, формой крыльчатки и наличием распределен­ных по окружности каналов. Периферийные насосы могут создать давление топлива только до 300 кПа, но они отличаются малошум­ной работой и находят свое применение благодаря непрерывному, практически не пульсирующему течению топлива. Насосами с боко­вым каналом создается давление только до 100 кПа. Их применяют как подкачивающие насосы в системах с магистральным насосом и как первую ступень при двухступенчатых погружных насосах в ав­томобилях с проблемами горячего пуска, а также в системах с од­ноточечным впрыском.

Электроуправляемые форсунки

При распределенном впрыске бензина каждый цилиндр двига­теля имеет электромагнитную форсунку. Она впрыскивает топливо строго дозированно и в определяемый блоком управления момент времени непосредственно перед впускным (ыми) клапаном (нами) цилиндра. Электромагнитная форсунка имеет клапанную иглу с на­саженным магнитным сердечником (рис. 6.22 и 6.23). Она очень точно прилегает к корпусу распылителя. Спиральная пружина прижимает клапанную иглу в спокойном состоянии к уплотнительному седлу корпуса распылителя и закрывает, таким образом, выходное топливное отверстие во впускной трубопровод двигателя.

Как только блок управления подключает обмотку форсунки, сер­дечник с клапанной иглой поднимается на 60...100 мкм, вследствие чего топливо впрыскивается через калиброванное отверстие.

В зависимости от способа впрыска, частоты вращения и нагруз­ки двигателя время включения составляет 1,5...18 мс при частоте срабатывания 3...125 Гц.

В зависимости от особенностей системы имеются различные типы форсунок.

Форсунка с верхним подводом топлива. В такой форсунке то­пливо подается сверху по ее вертикальной оси. Верхний конец форсунки вставляется в соответствующей формы отверстие топ­ливной рампы, нижний - во впускной трубопровод двигателя. Фор­сунка притягивается пружинным фиксатором к топливной рампе. Уплотнение обеспечивается резиновыми кольцами.

Форсунка с боковым подводом топлива. Встроенная в топ­ливную рампу форсунка такого типа омывается топливом. Подвод топлива осуществляется сбоку. Топливная рампа монтируется не­посредственно на впускном коллекторе. Форсунка крепится прижи­мом или крышкой топливной рампы, в которой может располагаться также и электрический разъем. Два уплотнительных кольца предот­вращают утечку топлива. Наряду с хорошими характеристиками горячего пуска и работы за счет охлаждения топливом, конструкция модуля, состоящего из топливной рампы и форсунок, отличается меньшей высотой.

По способу дозирования различают форсунки с кольцевым, однодырчатым и многодырчатым распылением (рис. 6.24, где: 1 - распылитель с кольцевым каналом; 2- однодырчатый распылитель; 3 - многодырчатый распылитель; 4 - многодырчатый двухфакельный распылитель).

Для оптимизации топливоподачи на двигателях с двумя впускны­ми клапанами используется многодырчатый двухфакельный распы­литель.

При выборе типа топливного дозирования учитывается требование наименьшего образования пленки на стенках впускного канала при хорошей одно­родности топливовоздушной смеси. Форсунки с обтеканием воздухом позволяют добиться дальнейшего улучшения смесеобразования. С этой целью воздух из впускной трубы перед дроссельной заслонкой всасывается со звуковой скоростью через калиброванную щель прямо у шайбы распылителя. Благодаря молекулярному взаимодействию топлива и воздуха топливо очень мелко распыляется.

Форсунки непосредствен­ного впрыска. В ЭСУ топливо-подачей для организации непо­средственного впрыска топлива в цилиндры двигателя исполь­зуются форсунки с электромаг­нитным или пьезоэлектриче­ским приводом. Конструкция электромагнитной форсунки системы топливоподачи для дизельных двигателей Com­mon Rail фирмы Bosch пред­ставлена на рис. 6.25. Она состоит из: 1- сливной штуцер; 2 – разъем; 3 – электромагнит; 4 – резьбовой штуцер; 5 – клапан; 6 - сливное отверстие; 7 – жиклер; 8 – управляющая камера; 9 – плунжер; 10 – топливный канал; 11 – запорная игла. Топливо под давлением 1350 кПа пода­ется к резьбовому штуцеру 4, откуда поступает к распылите­лю через канал 10 и в управ­ляющую камеру 8 через жиклер 7 . Управляющая камера соеди­нена со сливным штуцером 1 через отверстие 6, закрываемое электромагнитным клапаном 5. При закрытом сливном отверстии к плунжеру 9 приложена гидравлическая сила, прижимающая иглу 11 к седлу.

Открытие электромагнитного клапана приводит к уменьшению давления в управляющей камере 8, поднятию плунжера 9 под дей­ствием давления со стороны распылителя и впрыску топлива в ци­линдр. При отключении электромагнита 3 сливное отверстия за­крывается под действием возвратной пружины. Давление в управ­ляющей камере повышается, и форсунка переходит в закрытое со­стояние. Применение электрогидравлического управления обу­словлено необходимостью создания значительного усилия для бы­строго открытия форсунки.

В системе Common Rail третьего поколения используются пьезофорсунки нового образца. Расположение пьезоэлемента в непо­средственной близости к игле форсунки позволило увеличить ско­рость ее срабатывания, снизить массу и число подвижных деталей. Развитие систем непосредственного впрыска направлено на орга­низацию ступенчатого открытия форсунки в зависимости от режима работы двигателя.

Исполнительные механизмы управления частотой вращения коленчатого вала на холостом ходу

Регулирование частоты вращения коленчатого вала на холостом ходу в ЭСАУ бензиновых двигателей осуществляется подачей до­полнительного воздуха в обход дроссельной заслонки или управ­ление ее положением.

В первом случае небольшое количество воздуха направляется во впускной коллектор в обход дроссельной заслонки. В этом кана­ле устанавливается клапан регулировки оборотов холостого хода. При изменении количества воздуха, проходящего через клапан, частота вращения коленчатого вала также изменяется.

В системах К, L-Jetronic фирмы Bosch количество добавочного воздуха регулировалось заслонкой, управляемой биметаллической пластиной (рис. 6.26, где: 1 - разъем; 2- электронагревательный элемент; 3 - биметаллическая пластина; 4 - заслонка). Впоследствии стал применяться трехпроводной клапан регулировки холостого хода (рис. 6.27) Электродвига­тель клапана вращается по или против часовой стрелки в зависи­мости от подключенной обмотки. БУ периодически переключает направление вращения двигателя, что предотвращает перемеще­ние клапана в любое из крайних положений. Изменяя соотношение времени включения одной или другой цепи, БУ может установить клапан в любое требуемое положение.

В некоторых модификациях систем впрыска используется двух­проводной клапан управляемый электромагнитом с возвратной пружиной.

БУ подает на электромагнит клапана управляющие импуль­сы напряжения с постоянной частотой (около 110 Гц). При включе­нии электромагнит преодолевает усилие пружины и открывает кла­пан. Время открытого состояния клапана определяется скважно­стью импульса (т.е. относительным временем подачи напряжения). Чем больше скважность импульсов, тем большее количество воз­духа пройдет через клапан. При неисправности электромагнита клапан останется в закрытом положении. Даже при полностью за­крытом клапане, через него проходит небольшое количество возду­ха для обеспечения базовой частоты вращения коленчатого вала на режиме холостого хода.

В современных системах для управления холостым ходом ис­пользуются шаговые электродвигатели. Шаговый электродвигатель может использоваться для открытия-закрытия клапана, регулирую­щего поступление воздуха во впускной коллектор или ступенчатого перемещения дроссельной заслонки.

На рис. 6.28 представлен регулятор холостого хода с шаговым электродвигателем (а ) и схема его работы (б ). Он состоит: 1- клапан; 2, 3- обмотки шагового электродвигателя; 4 - ротор шагового электродвигателя; 5- пружина; 6 - РХХ; 7 - дроссельный патрубок;5 -дроссельная заслонка; 9- клапан; 10- разъем; А - поступающий воздух.

На статоре электродвигателя размещены об­мотки, имеющие четыре выхода. В продольных пазах ротора уста­новлены постоянные магниты с чередующимся расположением по­люсов. Управление двигателем ведется с помощью электрических импульсов различной полярности подаваемых на обмотки в опре­деленной последовательности. Винтовая передача преобразует вращение вала в поступательное движение клапана.

Датчики для определения нагрузки двигателя

Одной из основных величин для расчета цикловой подачи топ­лива и угла опережения зажигания является нагрузка двигателя;

Для определения нагруз­ки двигателя используются следующие чувствительные элементы:

Датчик количества воздуха;

Нитевой датчик массового расхода воздуха;

Пленочный датчик массового расхода воздуха;

Датчик давления во впускной трубе;

Датчик положения дроссельной заслонки.

Датчик количества воздуха. Датчик устанавливает­ся между воздушным фильт­ром и дроссельной заслон­кой и производит измерение объема воздуха (м 3 /ч), по­ступающего в двигатель (рис. 6.29, где: 1 - дроссельная заслонка; 2- датчик расхода воздуха; 3- сигнал терморезистора; 4 - блок управления; 5- сигнал потенциометра; 6- воздушный фильтр. q l - поступающий воздух; α - угол отклонения заслонки). Проходящий поток воздуха отклоняет за­слонку, противодействуя по­стоянной силе возвратной пружины. Угловое положе­ние заслонки регистрируется потенциометром. Напряже­ние с него передается на блок управления, где произ­водится его сравнение с пи­тающим напряжением по­тенциометра. Это отноше­ние напряжений является мерой для поступающего в двигатель объема воздуха. Определение отношений напряжений в блоке управления исключает влияние изно­са и температурных характеристик сопротивлений потенциометра на точность. Чтобы пульсации проходящего воздуха не вели к колеба­тельным движениям воздушной заслонки, она стабилизируется противовесной заслонкой. С целью учета изменения плотности посту­пающего воздуха при изменении температуры датчик расхода оснащен терморезистором.

По сопротивлению терморезистора проводит­ся корректировка показаний датчика. Датчик количества воздуха дол­гое время был составной частью большинства систем Motronic и Jetronic, выпускаемых серийно. Согласно современным требованиям показания датчика расхода воздуха не должны зависеть от атмо­сферного давления, температуры пульсаций и обратного потока воз­духа, возникающих при работе двигателя. Поэтому в настоящее вре­мя датчик количества воздуха с заслонкой заменен более совершен­ными датчиками массового расхода воздуха.

Датчики массового расхода воздуха. Датчиками массового расхода воздуха называют нитевые или пленочные термоанемометрические датчики. Они устанавливаются между воздушным фильтром и дроссельной заслонкой и измеряют массу воздуха, по­ступающего в двигатель (кг/ч). Принцип действия обоих датчиков одинаков. В потоке поступающего воздуха находится электрически нагреваемое тело, которое охлаждается воздушным потоком.

Схема регулирования тока нагрева рассчитана таким образом, что всегда имеется положительная разность температуры измерительно­го тела относительно проходящего воздуха. В данном случае ток на­грева является мерой для массы воздушного потока. При таком ме­тоде измерения производится учет плотности воздуха, так как она также определяет величину теплоотдачи нагреваемого тела. Отсут­ствие в датчике подвижных частей делает его более надежным.

Нитевой датчик массового расхода воздуха. У данного дат­чика нагреваемым элементом является платиновая нить толщиной 70 мкм. Для учета температуры поступающего воздуха производит­ся ее измерение встроенным компенсационным терморезистором. Нагреваемая нить и терморезистор включены в мостовую схему. Рис. 6.30 – отражает компоненты нитевого датчика массового расхода воздуха: 1 - компенсационный терморезистор; 2- кольцо с нагреваемой нитью; 3 - прецизионный резистор; Q м - поступающий воздух. Рис. 6. 31 – мостовая схема нитевого датчика массового расхода воздуха: R н - нагреваемая нить; R к - компенсационный терморезистор; R м - прецизионный резистор; R 1 , R 2 - балансировочные резисторы; (U м - выход­ное напряжение; Q м - поток воздуха. Нитевой датчик массового расхода воздуха приведен на рис. 6.32, где: 1 – электронный модуль; 2 – крышка; 3 – металлическая вставка; 4 – внутренняя труба с нагреваемой нитью; 5 – кожух; 6 – защитная решетка; 7 – стопорное кольцо. Ток нагрева образует на прецизионном резисторе падение напряжения, пропорциональное массе проходящего воздуха. С целью предупреждения дрейфа за счет отложения загрязнений на платиновой нити после отключения двигателя осуществ­ляется ее нагрев «прожиг» в течение нескольких секунд до темпе­ратуры, ведущей к испарению или осыпанию отложений и тем са­мым ее очистке.

Пленочный датчик массового расхода воздуха. У такого датчика нагреваемым элементом является пленочный платиновый резистор, который находится вместе с другими элементами мостовой схемы на керамической подложке. Рис. 6.33. - пленочный датчик массового расхода воздуха: а – корпус; б – чувствительный элемент с нагреваемой пленкой (смонтирован в центре корпуса); 1 – радиатор; 2 – промежуточная деталь; 3 - силовой блок; 4 – электронный модуль; 5 - чувствительный элемент.

Рис. 6.34 - чувствительный элемент с нагреваемой пленкой: 1 – керамическая подложка; 2 – паз; R к – компенсационный терморезистор; R 1 – резистор моста; R Н – нагреваемый резистор; R S – терморезистор.

Рис. 6.35 - . Схема пленочного датчика массового расхода воздуха: R к - компенсационный терморезистор; R н - нагреваемый резистор; R 1 , R 2 , R 3 - резисторы моста; U м - выходное напряжение; I н - ток нагрева; t L - температура воздуха; Q м - поток воздуха.

Температура нагреваемого элемента измеряется терморезисто­ром, который включен в мостовую схему. Раздельное исполнение нагревательного элемента и терморезистора удобно для организа­ции управления. Для измерения температуры воздуха используется компенсационный терморези­стор, также расположенный на подложке, но отделенный канав­кой. Напряжение на нагреваемом элементе является мерой для массы воздушного потока. Это напряжение преобразовывается электронной схемой изм



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»