Автоматические системы с обратной связью в автомобиле. Для безопасности дорожного движения разрабатываются новые электронные системы безопасности для автомобиля. Система курсовой устойчивости автомобиля

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Автомобилей на дорогах становится все больше, управлять им в плотном потоке становится все сложнее. Кроме того, в движении принимает участие большое количество молодых водителей, не обладающих достаточным опытом управления автомобилем.

Для помощи водителю и для повышения безопасности дорожного движения разрабатывается большое количество электронных систем безопасности автомобилей.

Автомобильные системы безопасности

Все системы безопасности делятся на активные и пассивные:

  • назначение активных систем – предотвратить столкновения автомобилей;
  • пассивные системы безопасности снижают тяжесть последствий при аварии.

Обзор систем активной безопасности

Данный обзор – попытка перечислить и дать характеристику современным системам активной безопасности.

1. (АБС, ABS). Предотвращает проскальзывание колес во время торможения автомобиля. Часто (но не всегда) работа АБС сокращает тормозной путь автомобиля, особенно на скользкой дороге.

3. Система аварийного торможения (EBA, BAS). В случае быстро поднимает давление в тормозной системе. Используется вакуумный способ управления.

4. Система динамического контроля над торможением (DBS, HBB). Быстро поднимает давление при экстренном торможении, но способ реализации иной, гидравлический.

5. (EBD, EBV). Фактически это программное расширение последних поколений АБС. Тормозное усилие правильно распределяется между осями автомобиля, не допуская блокировки, в первую очередь, задней оси.

6. Электромеханическая тормозная система (ЕМВ). Тормозные механизмы на колесах активируются при помощи электродвигателей. На серийных автомобилях ещё не применяется.

7. (АСС). Сохраняет выбранную водителем скорость автомобиля, поддерживая при этом безопасную дистанцию до движущегося впереди автомобиля. Для поддержания дистанции система может изменять скорость автомобиля, воздействуя на тормоза, или дроссельную заслонку двигателя.

8. (Hill Holder, HAS). При трогании автомобиля на подъеме система не позволяет автомобилю откатываться назад. Даже при отпущенной педали тормоза давление в тормозной системе сохраняется и начинает уменьшаться при нажатии на педаль «газа».

9. (HDS, DAC). Сохраняет безопасную скорость автомобиля при движении на спусках. Включается водителем, но активируется при определенной крутизне спуска и достаточно малой скорости автомобиля.

10. (ASR, TRC, ASC, ETC,TCS). Не дает колесам автомобиля проскальзывать при наборе им скорости.

11. (APD, PDS). Позволяет обнаружить пешехода, поведение которого может привести к столкновению. При опасности оповещает водителя и включает тормозную систему.

12. (PTS, Park Assistant, OPS). Помогает водителю припарковать автомобиль в стесненных условиях. Некоторые разновидности систем выполняют эту работу в автоматическом или автоматизированном режиме.

13. (Area View, AVM). При помощи системы видеокамер, а точнее, синтезированного с них изображения на мониторе помогает управлять автомобилем в стесненных условиях.

14. . Берет управление автомобиля на себя в опасной ситуации для увода автомобиля из-под удара.

15. . Эффективно удерживает автомобиль на полосе движения, обозначенной линиями разметки.

16. . Контролируя наличие помех в «мертвых зонах» зеркал заднего вида помогает безопасно выполнить маневр перестроения.

17. . При помощи видеокамер, реагирующих на тепловое излучение предметов, на мониторе создается изображение, помогающее управлять автомобилем при недостаточной видимости.

18. . Реагирует на знаки ограничения скорости, доводит эту информацию до водителя.

19. . Выполняет мониторинг состояния водителя. Если, по мнению системы, водитель устал, она требует остановки и отдыха.

20. . При аварии, после первого столкновения включает тормозную систему автомобиля, чтобы избежать последующих столкновений.

21. . Наблюдает за обстановкой вокруг автомобиля и при необходимости принимает меры, призванные предотвратить аварию.

В конструкциях автомобилей все более широкое применение находят электронные системы управления. По прогнозам специалистов в ближайшее десятилетие только 15…18 % изменений конструкции автомобилей будет отдано механике, основные изменения будут касаться электронных систем управления автомобилем.

При упрощенном рассмотрении электронной системы управления автомобилем можно выделить четыре основных блока (рис. 1): входные сигналы - датчики, системы передач данных, электронный (электронные) блок (блоки) управления (ЭБУ), исполнительные механизмы (ИМ).

Рис. 1.

Электронный блок управления является самым сложным прибором систем управления двигателем или отдельных систем автомобиля и координирует их работу. Основу блока составляет центральный процессор или микрокомпьютер.

ЭБУ получает электрические сигналы от датчиков или генераторов в ожидаемом интервале значений, оценивает их, затем проводит вычисление пусковых сигналов для исполнительных устройств (приводов).

Входные сигналы могут быть цифровыми, аналоговыми и импульсными (рис. 2).


Рис. 2.

Цифровые входные сигналы - это входные сигналы, которые имеют только два состояния: «высокий уровень» и «низкий уровень». Примеры цифровых входных сигналов: сигналы включения/ выключения, сигналы цифровых датчиков (например, импульсы от датчика Холла). Такие сигналы обрабатываются непосредственно микропроцессором.

Аналоговые входные сигналы в пределах заданного диапазона принимают значения напряжения. Физические величины, которые Н - высокий уровень сигнала; L - низкий уровень сигнала; FEPROM - программируемая память (постоянное запоминающие устройство, ПЗУ); EEPROM - постоянная память (ПМ); RAM - оперативная память (ОП); A/D - аналогово-цифровой преобразователь (АЦП); CAN - электронная цифровая шина данных рассматриваются как аналоги измеренных значений напряжения: массовый расход воздуха на впуске, напряжение аккумуляторной батареи, давление во впускном коллекторе и давление наддува, температура охлаждающей жидкости и воздуха на впуске. Аналогово-цифровой преобразователь (АЦП) преобразует эти значения в цифровые сигналы, с которыми затем микропроцессор проводит расчеты.

Разновидностью аналоговых сигналов являются быстро изменяющиеся сигналы напряжения, называемые импульсными входными сигналами . Импульсные входные сигналы от индуктивных датчиков, содержащие информацию о частоте вращения и положении вала (по метке), обрабатываются в их собственном контуре в ЭБУ. Здесь ложные импульсы подавляются, импульсные сигналы преобразуются в цифровые прямоугольные сигналы.

Для работы микропроцессору требуется программа, которая хранится в программируемой (перезаписываемой ) памяти (постоянное запоминающие устройство - ПЗУ, или FEPROM). Эта память предназначена только для считывания информации. Она также содержит специальные фиксированные данные (индивидуальные данные, характеристические и программируемые матрицы, значения поправочных коэффициентов и данные, необходимые процессору для расчетов длительности управляющих импульсов форсунок, угла опережения зажигания и т.п.), которые не могут быть изменены во время управления автомобилем. Перезаписывающая память является энергонезависимой, т.е. вся занесенная в нее информация сохраняется при отключении энергопитания сколь угодно долго.

Оперативная память (RAM) служит для хранения таких изменяющихся данных, как численные значения сигналов. Для правильной работы ОП требуется постоянное электрическое питание. При отключении зажигания или выключателя пуска ЭБУ выключается и, следовательно, теряется вся память (так называемая испаряющаяся память). Адаптирующие значения величин, т.е. те, которые «обучаются» системой во время работы и касаются работы двигателя рабочих режимов, должны быть восстановлены при включении ЭБУ в работу.

Данные, которые нельзя терять (например, коды иммобилайзера и данные кодов неисправности), должны храниться в устройстве EEPROM (ПМ) - данные в ПМ не теряются даже в случае отсоединения аккумуляторной батареи.

Блок текущего контроля ЭБУ оснащается следящим контуром, который встроен в специализированную интегральную схему, которая оснащается повышенной оперативной памятью (extra RAM), усовершенствованными входными и выходными блоками и может генерировать и передавать сигналы широтно-импульсной модуляции. Микропроцессор и блок текущего контроля следят друг за другом и, как только обнаруживается неисправность, любой из них может выключить подачу топлива независимо от другого.

Используя выходные сигналы , микропроцессор запускает задающие каскады. Выходные сигналы обычно являются достаточно мощными, чтобы непосредственно управлять исполнительными устройствами или реле. Задающие каскады защищены от короткого замыкания на массу или аккумуляторную батарею и разрушения при электрической перегрузке. Такие нарушения в работе вместе с обрывами цепи или неисправностями датчиков определяются контроллером задающих каскадов, затем эта информация передается в микропроцессор. Выходные сигналы могут быть переключающими и сигналами широтно-импульсной модуляции.

Переключающие сигналы используются для включения и выключения исполнительных устройств (например, электровентилятора системы охлаждения двигателя). Сигналы широтно импульсной модуляции (PWM signals ) - это прямоугольные сигналы с постоянным периодом, но переменные по времени (рис. 3). Они могут быть использованы для пуска электромагнитных приводов (например, клапана системы рециркуляции ОГ - отработавших газов).

Встроенная диагностика . Одной из важных функций блока управления является непрерывная самодиагностика не только входных и выходных цепей компонентов, но и некоторых показателей внутреннего состояния системы. В современных ЭБУ осуществление самодиагностики занимает до 50 % ресурсов микрокомпьютера. В случае нахождения неисправностей в какой-либо цепи (например, отсутствие или несоответствие заданному уровню сигнала одного из датчиков) микропроцессор записывает соответствующий данной неисправности цифровой код в специальную область памяти, а для того чтобы получить информацию о характере неисправности, необходимо осуществить считывание кода из памяти компьютера.

Рис. 3. а - постоянный период; b - длительность сигнала

ЭБУ постоянно контролирует исправность всех его компонентов, но ошибка помимо своего информационного значения несет флаг статуса, т.е. ошибки могут быть статические (текущие) и случайные (спорадические, накопленные).

Каждый раз при включении зажигания ЭБУ начинает анализировать работу своих датчиков и исполнительных устройств. Такой анализ длится все время, пока работает двигатель. При обнаружении дефекта ЭБУ фиксирует неисправность, выставляет код ошибки и использует аварийную ветвь программы управления. В случае если какой-либо входной сигнал отсутствует или заведомо неправильный, блок управления рассчитывает и использует вместо него некоторое теоретическое значение, что позволяет ему продолжать дальнейшее управление двигателем. Например, при выходе из строя датчика давления во впускном коллекторе для определения времени впрыска используется значение, рассчитанное исходя из частоты вращения коленчатого вала и положения дроссельной заслонки.

После выключения зажигания блок управления сохраняет код в ОЗУ.

2. Системы передачи данных

Современное автомобилестроение интенсивно внедряет инновационные технологии в системах управления. Общая тенденция в области автоматизации автомобилей состоит в замене традиционной централизованной системы управления распределенной системой управления путем соединения блоков управления интеллектуальных датчиков и исполнительных механизмов. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностирования автомобилей и снижением надежности. Увеличивающееся применение электронных систем управления автомобилей с обратной и без обратной связи требует, чтобы индивидуальные ЭБУ работали в сети друг с другом. Такие системы управления включают:

  • управление коробкой передач;
  • электронное управление двигателем или регулирование подачи топлива;
  • антиблокировочную систему тормозов (ABS);
  • противобуксовочную электронную систему (TCS);
  • электронную систему курсовой устойчивости (ESP);
  • систему управления тормозным моментом (MSR);
  • электронный иммобилайзер (EWS);
  • бортовой компьютер и т.д.

Обмен информацией между системами уменьшает общее количество необходимых датчиков и улучшает управление отдельными системами. Интерфейсы систем передачи информации, проектируемые для применения в автомобилях, могут быть подразделены на четыре категории:

  1. обычная передача данных;
  2. последовательная цифровая передача данных, т.е. сеть контроллеров (CAN);
  3. широкополосные шины передачи данных с временным разделением каналов (шина FlexRay);
  4. оптическая передача данных (шина типа МОSТ).

Обычная передача данных в автомобиле (рис. 4) характеризуется тем, что каждый сигнал имеет свой собственный канал связи (провод). При этом с каждой дополнительной информацией возрастает также число проводов и количество контактов на блоке управления, поэтому подобный тип передачи информации оправдывает себя только в случае ограниченного объема передаваемых данных.

Рис. 4.

Увеличение обмена данными между электрическими компонентами автомобиля уже достигли таких объемов, что дальнейшие попытки управления через обычные интерфейсы уже не удовлетворяют современные системы управления, поэтому стали применяться шины передачи данных.

В связи с возросшими требованиями передачи информации в автомобильных системах управления, вместо обычной электропроводки в современных автомобилях используется последовательная цифровая передача данных . Все более широкое распространение находят электронные цифровые шины данных CAN (Controller Area Network). Цифровая передача данных значительно надежнее обычной аналоговой, так как шина лучше защищена от помех, контакты надежно изолированы от внешних воздействий.

Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники. CAN-шина облегчает диагностику и ремонт вышедших из строя компонентов системы управления автомобилем. Универсальная проводка подходит и для разных комплектаций одного автомобиля - дополнительные устройства просто подключаются к нужным разъемам.

В зависимости от приоритетов и требований к скорости передачи данных шина CAN может быть одноили двухпроводной.

Если для работы систем достаточно низкой скорости передачи данных, то используются шины с одним проводом связи, если скорость передачи должна быть высокой - шины с двумя проводами связи. Второй провод используется для проверки правильности переданной модулем управления информации и для самоконтроля модуля. Данные передаются по обоим проводам одновременно. Сигнал на первом проводе представляет собой перевернутое повторение сигнала, передаваемого по второму проводу.

Все связанные через шину CAN блоки управления подключаются к ней параллельно. Один из проводов шины CAN называется верхним - CAN H (High), другой - нижним - CAN L (Low). Два невзаимозаменяемых скрученных провода (рис. 5) образуют пару (Twisted Pair).

Рис. 5.

Скручивание проводов производится для того, чтобы ослабить помехи электромагнитного характера, а также излучающие помехи. Скручивание позволяет также устранить излучение шины, способное создать помехи в работе других устройств.

По проводу CAN H информация передается в виде электрических сигналов напряжением от 2,5 до 3,5 В, а по проводу CAN L - от 1,5 до 2,5 В (рис. 6). Разность напряжений, равная нулю, дает уровень логического нуля, а разность напряжений 2,0 В - уровень логической единицы.

Рис. 6.а - напряжение; б - разность напряжений; А, С - логический уровень равен 0; B - логический уровень равен 1

CAN - мультимастерная шина, т.е. без центрального управляющего устройства. Все подключаемые к центральному или центральным блокам электронные блоки разных систем (или контроллеры) равноправны - любой имеет доступ к передаваемым данным и может сам их передавать.

CAN-шина относится к типу последовательных; передача данных в шине выполняется по протоколу в виде обмена сообщениями между блоками управления через очень короткие промежутки времени. Протокол состоит из последовательности бит* информации, передающихся друг за другом. Число бит в протоколе передачи данных зависит от размера поля данных.

* Бит - базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равно вероятных исхода (да или нет).

Данные передаются бит за битом и в такой же последовательности принимаются. Биты составляют отдельные поля (рис. 7), из них складываются так называемые кадры - основные информационные единицы.

Начало кадра обозначает начало протокола передачи данных.

Арбитражное поле используется для обозначения приоритета протокола передачи данных. Например, если двум блокам управления требуется отправить сообщения одновременно, то первым отправляет сообщение в блок управления с более высоким приоритетом. Кроме того, арбитражное поле используется для определения содержания сообщения (например, частоты вращения коленчатого вала двигателя).

Рис. 7.1 - начало кадра (1 бит); 2 - арбитражное поле (11 бит); 3 - неиспользуемое (запасное) поле (1 бит); 4 - поле управления (6 бит); 5 - поле данных (64 бита); 6 - поле обнаружения ошибок CRC (16 бит); 7 - поле сигнала приемника передатчику ACK (2 бита); 8 - конец кадра (7 бит)

В поле управления (контрольное поле ) в виде кода записывается количество элементов информации в поле данных. Этим обеспечивается возможность для каждого приемника проверить, были ли получены все необходимые данные.

В поле данных передаются элементы данных, являющиеся важными для других блоков управления. Оно содержит больше всего информации: от 0 до 64 бит (от 0 до 8 байт).

Поле CRC используется для обнаружения ошибок в процессе передачи данных.

Поле ACK содержит сигнал приемника передатчику о том, что протокол данных был успешно выполнен. В случае обнаружения ошибки информация об этом немедленно поступает в передатчик и отправка сообщения повторяется.

Конец кадра предназначен для проверки передатчиком протокола данных и отправки приемнику подтверждения о его безошибочном выполнении. В случае обнаружения ошибки передача данных немедленно прекращается, а затем выполняется повторно. После этого протокол передачи данных считается выполненным.

Один кадр может включать несколько параметров, например, кадр, выдаваемый ЭБУ системы впрыска топлива, может состоять из следующих параметров:

  • частота вращения коленчатого вала двигателя;
  • средний эффективный крутящий момент двигателя;
  • заданная водителем скорость движения;
  • состояние системы круиз-контроля (включена или не включена);
  • разрешение на включение компрессора кондиционера;
  • величина крутящего момента двигателя без учета воздействия автоматической коробки передач.

Рис. 8. 1 - идентификационный код послания (11 бит); 2 - содержание послания (до 8 × 8 бит); 3 - контрольная сумма (16 бит); 4 - подтверждение приема послания (2 бит)

Некоторые кадры выдаются периодически (например, кадр системы впрыска топлива - через каждые 10 с), другие - при наступлении какого-либо события (например, кадр, генерируемый ЭБУ подушек безопасности, выдается в случае удара, при этом выключается топливный насос, происходит разблокировка замков дверей и запрещается блокировка рулевой колонки).

Обмениваемая информация состоит из отдельных посланий, которые могут быть отправлены и получены каждым из блоков управления. Каждое из посланий (рис. 8), составленное согласно протоколу, содержит данные о каком-либо физическом параметре, например, о частоте вращения коленчатого вала.

Примером идентификационного кода послания может быть: двигатель, частота вращения коленчатого вала двигателя. В этом же послании могут содержаться и другие данные (например, указания о холостом ходе, передаче крутящего момента и других режимах работы двигателя). При этом величина частоты вращения представляется в двоичной форме, т.е. как последовательность нулей и единиц или бит (рис. 9). Например, значение частоты вращения двигателя 1800 об/мин может быть представлено как двоичное число 00010101.

Рис. 9.

Пример упрощенной передачи данных на примере угла положения дроссельной заслонки, который показывает, как строится информация, дан в табл. 1. Положение дроссельной заслонки от 0° до 102° передается с шагом 0,4° 8 битами, таким образом возможно 256 вариантов комбинаций битов.

Таблица 1. Зависимость изменения данных в шине от положения (угла) дроссельной заслонки

В современных автомобилях, как правило, применяются три вида шин, работающие с разными скоростями (рис. 10). Наиболее важные устройства и системы (антиблокировочная система тормозов, система курсовой устойчивости и др.) подключаются к скоростной магистрали с пропускной способностью 500…1000 Кб/с, практически обеспечивающей работу системы в реальном времени. Менее быстрые и важные приборы - система «Комфорт» или информационно-командная система (радио, монитор на центральной консоли, система навигации и кондиционирования) - завязаны на вторую шину со скоростью 95,2…100,0 Кб/с. Для остальных «медленных» устройств - система «Комфорт» (дверных замков, систем освещения, стеклоподъемников) - служит третья шина со скоростью 33,3…100,0 Кб/с.

Рис. 10.(на примере автомобиля Polo модели 2002 г.): 1 - шина наиболее важных устройств; 2 - шина информационно-командной системы; 3 - шина системы комфорта; БУ - блок управления; ЗУ - запоминающее устройство

Вместо ключа зажигания в автомобилях, оборудованных CAN-шинами, используют электронный брелок, который взаимодействует с блоком управления двигателем через цифровую шину. Возросшие требования к скорости передачи и безопасности данных требуют применения широкополосных шин передачи данных с временным разделением (временным управлением) каналов (для сравнения: CAN представляет собой событийно-управляемую шину данных).

Шина FlexRay - это последовательная, детерминистическая и устойчивая к сбоям шина передачи данных для применения в автомобиле; скорость передачи данных составляет 10 Мб/с, что в 20 раз превышает скорость передачи по высокоскоростной шине CAN (500 Кб/с).

Важной особенностью FlexRay является также гарантированное время реакции или латентный период реагирования, т.е. время, которое требуется на прохождение сообщения от отправителя до получателя. В связи с этим говорят также о детерминистической (предопределенной, регламентированной) передаче. Это означает, что данные поступают к адресату или адресатам в строго определенный или предварительно заданный момент времени (возможно применение в режиме реального времени).

Шина FlexRay двухпроводная: плюсовой провод обозначают красным цветом, минусовой - синим. Уровень напряжения на обоих проводах колеблется (рис. 11) от минимума (2,2 В) до максимума (2,8 В) (для сравнения в высокоскоростной шине CAN 1,5…3,0 В). Уровень разностного напряжения составляет не менее 600 мВ (в высокоскоростной шине CAN 2 В).

Рис. 11.

FlexRay работает с тремя состояниями сигнала:

  • холостой сигнал - уровень напряжения обоих проводов шины составляет 2,5 В (режим холостого хода). Рецессивный сигнал означает, что уровень напряжения может быть превышен (перезаписан) другим блоком управления;
  • 1 - плюсовой провод имеет высокий, а минусовой - низкий доминирующий уровень напряжения;
  • 0 - плюсовой провод имеет низкий, а минусовой - высокий доминирующий уровень напряжения.

Доминирующий сигнал означает, что этот уровень напряжения не может быть превышен (перезаписан) другими блоками управления.

При таких параметрах уровня напряжения время передачи 1 бит составляет 100 нс (наносекунд) (для сравнения в высокоскоростной шине 2000 нс).

Центральный блок информационно-командной системы может соединяться с процессором навигационной и других систем посредством оптического кабеля - шины типа МОSТ (Media Oriented Systems Transport). Это необходимо для защиты линии передачи данных от помех. Для передачи данных через оптический кабель следует преобразовать аналоговую информацию в серии световых импульсов, которые затем могут распространяться по стеклянным волокнам кабеля. Длина световых волн меньше длины радиоволны, поэтому они не создают электромагнитных помех и сами являются невосприимчивыми к таковым.

Вокруг любого проводника, по которому проходит электрический ток (рис. 12), возникают поля, поэтому проложенные параллельно или перекрещивающиеся проводники тока создают взаимные помехи. Помехи создаются также электромагнитными волнами, генерируемыми, например, мобильным телефоном. При использовании волоконно-оптической связи такие помехи отсутствуют.

Рис. 12. Передача тока по волоконно-оптическому (а) и металлическому (б) проводникам: 1 - цифровая информация; 2 - оптический кабель; 3 - аналоговая или цифровая информация; 4 - металлический проводник; 5 - электромагнитное поле проводника

Преимуществом современных волокно-оптических систем, кроме отсутствия помех, является также скорость передачи данных, достигающая 21,2 Мб/с, что позволяет передавать информацию в виде цифрового сигнала. Такая связь применяется при приеме аудио- и видеопередач, что требует скорости передачи данных порядка 6 Мб/с и больше, в то время как шина CAN при большом количестве жил в жгуте проводов может передавать данные со скоростью не более 1 Мб/с.

Светодиод - один из основных компонентов волокно-оптической системы (рис. 13) предназначен для преобразования сигнала по напряжению в световой сигнал. Длина волны выработанных световых сигналов около 650 нм и их видно как красный свет. Световод предназначен для отправки световых волн, вырабатываемых в передатчике одного блока управления, на приемник другого блока управления. Фотодиод предназначен для преобразования световых волн в сигналы по напряжению.

Рис. 13.1 - световод; 2 - фотодиод; 3 - светодиод; 4 - трансивер

Недостатком волокно-оптической системы является требование плавных изгибов; радиус изгиба световода не должен превышать 25 мм.

Шина типа MOST представляет шину последовательной передачи данных (аудио- и видеосигналов, голосовых сигналов) по оптическому кабелю (рис. 14). С точки зрения физического исполнения в случае шины MOST речь идет о кольцевой структуре (топологии) сети. Шина типа MOST может включать до 64 устройств.

Рис. 14. Шина типа MOST (на примере Touareg 2011 Volkswagen): 1 - ЭБУ в комбинации приборов; 2 - диагностический интерфейс шин данных; 3 - ЭБУ информационной электронной системы; 4 - ТВ-тюнер; 5 - DVD-чейнджер; 6 - головное устройство аудиосистемы; 7 - ЭБУ цифровой аудиосистемы

Современные автомобили в изобилии предлагают водителям разнообразных электронных помощников. В этой статье мы разберем причины появления таких систем, а также их работу.

Именно зимой, на скользкой дороге, и проявляются все преимущества высоких технологий, которые добавляют водителю спокойствия и уверенности. С другой стороны, рассмотрев подробно работу электроники, мы четко поймем ее возможности и перестанем приписывать ей чудесные свойства. Мысль о том, что на дорогом автомобиле все можно, крайне опасна.

Режимы работы АКПП

Автоматические коробки переключения передач имеют, как правило, несколько режимов работы:

  • нормальный;
  • спортивный;
  • зимний.

Все отличие между ними заключается лишь в том, в какой момент и какие передачи включаются. В одной из предыдущих статей мы рассматривали принципы подбора передач. Напомним - передачи подбираются из тех соображений, чтобы двигатель работал в том режиме, который требуется для достижения определенных целей.

Например, спортивный режим подразумевает подбор передач таким образом, чтобы двигатель все время работал на высоких оборотах, выдавая наибольшую мощность. Нормальный режим, наоборот, поддерживает двигатель в зоне умеренных оборотов - экономичном диапазоне. Конечно, когда водитель значительно утапливает педаль газа, электроника воспринимает это, как желание интенсивно ускоряться и включает более низкую передачу, что повышает обороты двигателя, соответственно, и его мощность - функция kick-down. Как только разгон закончен (педаль газа отпущена), автоматика снова включает высокую передачу, а вместе с ней и экономичный режим работы двигателя.

Оптимальный вариант для зимних дорог

Самый актуальный на сегодняшний день, зимний режим, отличается не только тем, что двигатель поддерживается на небольших оборотах, но и тем, что включаются по возможности более высокие передачи. В результате электроника не позволяет получить на колесах максимальный крутящий момент для предотвращения пробуксовки ведущих колес. В таком режиме, конечно, затруднительно взбираться на подъемы или кого-то буксировать, зато не требуется тонкая работа с газом при движении по скользкому покрытию.

Современные антипробуксовочные системы, которые будут рассмотрены ниже, больше не требуют от водителя вмешиваться в работу АКПП, поэтому зимний режим как таковой отсутствует. Электроника самостоятельно регулирует режимы работы двигателя и АКПП для достижения наилучших результатов в любой момент времени.

Последнее достижение технической мысли, которое появилось на современных автомобилях, - бесступенчатые КПП - вариаторы. Здесь вообще нет фиксированных передач - передаточное отношение может меняться плавно, без разрыва потока мощности и практически в бесконечном диапазоне. Конечно, современная электроника может управлять таким устройством с максимальной точностью, что позволяет добиться прекрасных результатов в любых условиях.

Антиблокировочная система тормозов (ABS)

Эта система была разработана самой первой из устройств активной безопасности. Причина ее появления следующая - тормозные механизмы любого автомобиля рассчитаны на большие нагрузки, поэтому при интенсивном торможении может возникнуть такая ситуация, когда тормоза настолько сильно зажмут колеса, что те перестанут вращаться. Автомобиль продолжает двигаться по инерции, а колеса скользят, как лыжи, происходит блокировка колес.

Когда колеса заблокированы, они в значительной мере теряют сцепление с дорогой. И что самое неприятное - они теряют его во всех направлениях. В результате, автомобиль не только начинает хуже тормозить, он вообще начинает хуже держаться за дорогу - его может развернуть или снести в сторону.

Как работает система ABS

На каждом из колес находится специальный датчик, который определяет - вращается колесо или нет. Как только этот датчик дает команду о том, что колесо остановилось, электроника, при помощи специального перепускного клапана, сбавляет давление в соответствующей тормозной магистрали. Это позволяет ослабить тормозное усилие, и колесо снова может вращаться. Теперь тот же датчик отвечает - колесо вращается, электроника снова зажимает тормозные механизмы. Так происходит много раз в секунду.

В результате работы системы ABS в тормозных магистралях возникают импульсы давления, и водитель ощущает значительную вибрацию педали тормоза. Кроме того, раздается характерный треск. Иногда это даже пугает водителя, впервые столкнувшегося с работой ABS - ему кажется, что автомобиль разваливается.

Эффективность работы системы

Иногда мы слышим от водителей недовольство системой ABS - я давлю на тормоз, все трещит, а машина продолжает двигаться вперед, без ABS я бы остановился быстрее. При работе антиблокировочной системы колеса продолжают немного проворачиваться, и водителю кажется, что система не позволяет использовать весь их потенциал по торможению. Это ошибочное ощущение - без ABS водитель бы заблокировал колеса надолго, и тормозной путь был бы намного больше.

Конечно, справедливости ради, нужно сказать о том, что на различных покрытиях максимально эффективное торможение может достигаться по-разному - бывают ситуации, когда даже полная и длительная блокировка колес приводит к отменному результату. ABS выполняет некую усредненную программу, поэтому, например, на гоночной технике таких систем не ставят - там опытный пилот добивается лучших результатов самостоятельно. Тем не менее, в обычной жизни случаи, когда профессионал может своими действиями достичь большего, чем электроника, редки.

И если вы не хотите все время быть в полной концентрации, как раллист на спец.участке, ABS сослужит вам добрую службу.

Только не забывайте о том, что в конечном итоге все зависит от водителя. Старайтесь тормозить на прямой (мы ранее рассматривали силы, действующие на колеса автомобиля), так тормозной путь будет меньше. При срабатывании ABS на автомобилях с механической КПП колеса частично блокируются, и двигатель вынужден работать на предельно малых оборотах - он пытается тянуть автомобиль дальше. Нажав на сцепление, вы отсоедините двигатель от колес и облегчите работу ABS.

Антипробуксовочная система и системы стабилизации

Буксование ведущих колес при разгоне также характеризуется потерей сцепления с дорогой. Длительное буксование не позволяет эффективно разгоняться на прямой и приводит к сносу ведущих колес при движении по дуге - переднеприводные автомобили соскальзывают с дороги передними колесами, заднеприводные - задними. Со всеми этими неприятностями справляется антипробуксовочная система.

При поступлении сигнала о том, что какое-либо из колес начало вращаться намного быстрее, чем его коллеги - электроника ограничивает подачу топлива в двигатель, как будто водитель сбавил газ. При этом ничего не трещит и не вибрирует - автомобиль просто вяло реагирует на газ. В связи с тем, что система воздействует не на колеса, а на двигатель, наблюдается определенная инерционность и «тупость» в реакциях автомобиля.

Поэтому, для тех, кто умеет и готов действовать самостоятельно, предусмотрено отключение данной системы - при грамотной работе водитель может добиться лучших результатов и получить при этом море удовольствия от активной езды. Если же вы не хотите пребывать в состоянии ковбоя, сидящего на необъезженном скакуне, включайте систему и расслабьтесь - состояние плавания на барже вам гарантировано.

Дальнейшее слияние и совершенствование антиблокировочной и антипробуксовочной систем привело к появлению систем стабилизации. Такая система комплексно воздействует и на тормоза, и на двигатель. Она не только выполняет описанные выше функции, но и выборочным подтормаживанием отдельных колес, вызывает появление сил, которые противодействуют возникновению заносов. Те же функции используются и для повышения проходимости - специальное подтормаживание не позволяет одному из колес буксовать в то время, как другие бездействуют.

Что нас ждет в будущем

Развитие подобных систем продолжается и двигается в 2-х основных направлениях. Первое - увеличение и совершенствование датчиков, т.е. чем больше и точнее поступает информация о состоянии автомобиля и окружающей среды, тем более полные выводы можно из этого сделать. Современные автомобили буквально напичканы разными датчиками.

Причем, если раньше эти датчики анализировали только состояние самого автомобиля, то теперь они начинают осмыслять то, что происходит вокруг.

Второе направление - совершенствование контроля над отдельными частями автомобиля. Здесь, как это ни печально, оказалось, что самое ненадежное звено в автомобиле - это прокладка между рулем и сидением, т.е. мы с вами, - водители. Поэтому автомобильные инженеры изо всех сил стараются отобрать у водителя возможность делать «что ему вздумается».

  • На многих автомобилях уже нет механической связи между педалью газа и дроссельной заслонкой, да и дроссельной заслонки, собственно, уже нет. Есть только датчик, который фиксирует ваши действия - степень нажатия на педаль газа, и компьютер, который думает, согласиться с вами или нет.
  • На подходе рулевое управление, в котором вы не будете поворачивать колеса, а будете просить компьютер повернуть колеса в нужном направлении.
  • То же и с тормозами, причем датчики сближения и ждать не будут, пока вы соизволите надавить на педаль тормоза. Mercedes ведет активные эксперименты по управлению автомобиля при помощи одного единственного джойстика… Все это одним словом называется «управление по проводам».
  • А уж когда удастся на каждое из колес поставить свой электродвигатель-тормоз, тогда с автомобилем можно будет сделать вообще все, что вздумается. Но вздумается не вам, а компьютеру.

Добавим спутниковое слежение и информационную связь с дорогой - и вы смело можете садиться не на переднее сидение, а ложиться в багажник.

Послесловие

Пока еще это «светлое» будущее не наступило, водителю все же требуется вспоминать о законах физики. А они просты - никакая электроника не уменьшает массу автомобиля и не убирает лед из-под колес. Современная электроника - это лишь помощники на случай небольших погрешностей водителя.

Очень хорошо сделал Mercedes - когда срабатывает система ESP, на панели загорается треугольник с восклицательным знаком. Не зелененькая голова с улыбкой (мол, все оk), а желтый треугольник с восклицательным знаком - поаккуратнее мол там, ты уже ошибся, ошибаться осталось недолго!

Грамотное и вдумчивое вождение автомобиля, которое подстраховывает современная электроника - это истинное наслаждение за рулем и возможность реализовать весь потенциал автомобиля. Неграмотное и халатное вождение автомобиля, с которым пытается бороться современная электроника - это езда на грани фола, до первой серьезной ошибки, когда уже ничто не поможет.


Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Тюменский государственный нефтегазовый университет

Сургутский институт нефти и газа (филиал)

Кафедра МТО

КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ «ЭЛЕКТРОНИКА И ЭЛЕКТРООБОРУДОВАНИЕ» НА ТЕМУ «ЭЛЕКТРОННЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ АГРЕГАТАМИ АВТОМОБИЛЯ. ОБЩИЕ СВЕДЕНИЯ. ЭЛЕКТРОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТОПЛИВОПОДАЧЕЙ ДИЗЕЛЕЙ. ДАТЧИКИ И ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ. ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ПОЛОЖЕНИЕМ ФАР. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ СТЕКЛООЧИСТИТЕЛЕМ. АВТОБЛОКИРОВКА ДВЕРЕЙ»

Выполнила: студентка группы АТХ-06

Савончук Екатерина

Приняла: Горшкова О.О.

Сургут 2009 г.

ВВЕДЕНИЕ______________________ ______________________________ ___3

  1. ЭЛЕКТРОННЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ АГРЕГАТАМИ АВТОМОБИЛЯ. ОБЩИЕ СВЕДЕНИЯ__________________4
  2. ЭЛЕКТРОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТОПЛИВОПОДАЧЕЙ ДИЗЕЛЕЙ. ДАТЧИКИ И ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ__________6
  3. ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ПОЛОЖЕНИЕМ ФАР______________10
  4. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ СТЕКЛООЧИСТИТЕЛЕМ______12
  5. АВТОБЛОКИРОВКА ДВЕРЕЙ________________________ ___________14

ЗАКЛЮЧЕНИЕ____________________ ______________________________ 16

СПИСОК ЛИТЕРАТУРЫ_____________ _____________________________ 17

ВЕДЕНИЕ

Электрооборудование автомобиля представляет собой сложный комплекс взаимосвязанных электротехнических и электронных систем, приборов и устройств, обеспечивающих надежное функционирование двигателя, трансмиссии и ходовой части, безопасность движения, автоматизацию рабочих процессов автомобиля и комфортные условия для водителя и пассажиров.

Развитие электрооборудования автомобилей тесно связано с широким применением электроники и микропроцессоров, обеспечивающих автоматизацию и оптимизацию рабочих процессов, большую безопасность движения, снижение токсичности отработавших газов и улучшение условий работы водителей.

  1. ЭЛЕКТРОННЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ АГРЕГАТАМИ АВТОМОБИЛЯ. ОБЩИЕ СВЕДЕНИЯ

Автомобильное электрооборудование включает в себя следующие системы и устройства:

Электроснабжения;

Электростартерного пуска двигателя внутреннего сгорания;

Освещения, световой и звуковой сигнализации;

Электронные системы управления агрегатами автомобиля;

Информации и контроля технического состояния автомобиля и его агрегатов;

Электропривода;

Подавления радиопомех;

Коммутационные, защитные устройства и электропроводку.

В систему электроснабжения входят генераторная установка и аккумуляторная батарея. К системе электростартерного пуска относят аккумуляторную батарею, электростартер, реле управления (дополнительные реле и реле блокировки) и электротехнические устройства для облегчения пуска двигателя. Система зажигания обеспечивает воспламенение рабочей смеси в цилиндрах бензинового двигателя искрой высокого напряжения, возникающей между электродами свечи зажигания. Помимо свечей, к системе зажигания относятся катушка зажигания, прерыватель-распределитель, датчик-распределитель, транзисторный коммутатор, добавочный резистор, высоковольтные провода, наконечники и т.д. Система освещения и световой сигнализации объединяет осветительные приборы (фары головного освещения), светосигнальные фонари (габаритные огни, указатели поворота, стоп-сигналы, фонари заднего хода и др.) и различные реле управления ими. Система информации и контроля включает в себя датчики и указатели давления, температуры, уровня топлива в баке, спидометр, тахометр, сигнальные (контрольные) лампы и пр. Электропривод (электродвигатели, моторедукторы, мотонасосы) находит все большее применение в системах стеклоочистки, отопления, вентиляции, предпускового подогрева двигателя, подъема и опускания антенны, блокировки дверей и стеклоподъемниках. Используется разнообразная коммутационная и защитная аппаратура: выключатели, переключатели, реле различного назначения, контакторы, предохранители и блоки предохранителей, соединительные панели и разъемные соединения.

  1. ЭЛЕКТРОННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ ТОПЛИВОПОДАЧЕЙ ДИЗЕЛЕЙ. ДАТЧИКИ И ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ

Электронные системы управления топливоподачей автомобильного дизельного двигателя по схемотехническому решению делятся на три типа: аналоговые системы, состоящие в основном из операционных усилителей; цифровые регуляторы, построенные на элементах средней степени интеграции; микропроцессорные системы.

Аналоговым системам, несмотря на простоту реализации, присущи следующие недостатки:

зависимость качества регулирования от точности изготовления применяемых элементов (резисторов, конденсаторов и др.);

зависимость электрических параметров элементов от внешних факторов;

реализуемая структура не оставляет возможности для выполнения системой функций, не предусмотренных в процессе проектирования, т. е. узкая специализированность системы.

Цифровые регуляторы позволяют в основном избавиться от этих недостатков, поскольку их точность определяется только выбранной разрядностью и не зависит от влияния внешней среды и времени эксплуатации. Однако это весьма сложные в конструктивном отношении системы, состоящие из значительного числа микросхем, и их надежность при использовании на автомобиле невысока. Такие системы также не могут перенастраиваться на другой режим эксплуатации либо на другой тип дизеля.

Для обслуживания автомобильного дизельного двигателя необходима система, осуществляющая не только комплексную автоматизацию двигателя (объединение функций систем топливоподачи, защиты и рециркуляции в одном электронном блоке), но также обеспечивающая эффективную работу дизеля в широком диапазоне скоростных и нагрузочных режимов при допустимом уровне токсичности отработавших газов. Поэтому аналоговые и цифровые системы применяются для дизелей, работающих в стационарных режимах, например для дизель-генераторных установок на судах и тепловозах.

На автомобильных дизельных двигателях находит все более широкое применение микропроцессорная система управления. Структурная схема такой системы изображена на рис. 2.1. Она включает в себя микропроцессор МП, осуществляющий все арифметические операции и общее управление устройствами, оперативное запоминающее устройство ОЗУ для хранения промежуточных результатов вычислений, постоянное запоминающее устройство ПЗУ для хранения программ управления всей системы в целом.

Для сбора информации о работе двигателя в системе предусмотрены три типа датчиков, а также датчики режимных параметров и датчики коррекции. К первому типу относятся датчики:

Частоты вращения коленчатого вала двигателя n д;

Положения рейки ТНВД h рейки;

Положения педали акселератора педали.

Рис 2.1. Структурная схема микропроцессорной системы управления дизельным двигателем

По сигналам от этих датчиков вычисляется предварительное значение управляющего воздействия на исполнительный механизм. Для более точного регулирования необходимо осуществлять коррекцию управляющего воздействия в зависимости от того, в каких условиях работает двигатель. Коррекция проводится по сигналам от следующих датчиков:

Температуры топлива t топлива;

Температуры всасываемого воздуха t воздуха;

Атмосферного давления Р атм.

Информация от этих датчиков позволяет корректировать величину необходимой дозы впрыскиваемого топлива. Датчик температуры масла в системе смазки двигателя t масла служит для оценки условий пуска двигателя.

Для предупреждения аварийных режимов работы дизеля служат датчик температуры охлаждающей жидкости t охл и датчик давления масла в системе смазки P масла.

Для связи с аналоговыми датчиками в системе предусмотрен аналогово-цифровой преобразователь АЦП и коммутатор, поскольку в каждый отдельный момент времени АЦП может получать информацию только с одного датчика.

В процессе выполнения программы коммутатор опрашивает последовательно все аналоговые датчики. Для подключения датчика частоты вращения коленчатого вала предусмотрен цифровой таймер. Непосредственное управление перемещением рейки топливного насоса осуществляется исполнительным механизмом. Контроллер прерываний осуществляет синхронизацию работы программы управления в соответствии с сигналами, снимаемыми с датчиков.

Особо важной задачей регулирования топливоподачи дизельного двигателя является обеспечение качественных переходных процессов, так как это непосредственно связано с технико-экономическими показателями работы двигателя. Поэтому в системе производится управление по пропорционально-интегрально- дифференциальному закону с целью устранения статических ошибок регулирования и получения наилучших динамических характеристик регулятора. Интегральная составляющая закона управления формируется в виде суммы всех управляющих воздействий, предшествующих рассчитываемому в данный момент. Дифференциальная составляющая формируется в виде приращений регулируемого параметра за единицу времени, поэтому в системе необходимо иметь устройство измерения времени. Эту функцию выполняет таймер, выдающий сигналы отметок времени, которые, поступая на контроллер прерываний, приостанавливают работу основной программы управления для замера приращения регулируемого параметра через равные промежутки времени.

Аварийные датчики также подключаются к контроллеру прерываний. В случае превышения каким-либо параметром предельно допустимого значения выполнение основной программы приостанавливается и запускается программа автоматической защиты двигателя. Так, например, при превышении температуры охлаждающей жидкости 105°С обеспечивается плавное снижение частоты вращения до холостого хода с включением аварийной световой и звуковой сигнализации. При недопустимом падении давления масла в системе смазки включается аварийная сигнализация и двигатель останавливается.

Регулирование в зоне частичных характеристик сводится к вычислению расчетного положения рейки топливного насоса, сравнению этого расчетного значения с реальным положением рейки и приведением рейки в рабочую точку по оптимальному закону в соответствии с рассогласованием.

  1. ЭЛЕКТРОННОЕ УПРАВЛЕНИЕ ПОЛОЖЕНИЕМ ФАР

Во всех странах оговаривают границы освещенной зоны при ближнем свете. Если по каким-либо причинам граница освещенной зоны приближается к автомобилю, то видимость дороги ухудшается. Если же граница освещенной зоны отдаляется, то ухудшаются условия видимости для водителей встречных автомобилей. Практика показала, что граница освещенной зоны при ближнем свете может значительно изменяться в зависимости от нагрузки автомобиля.

Чтобы снизить влияние нагрузки на границу освещенности, были сделаны попытки устанавливать фары в соответствии с наиболее часто встречающимися режимами нагрузки. Однако существенное улучшение условий освещения обеспечивают лишь системы регулирования, поддерживающие почти неизменную границу освещенной зоны при изменениях нагрузки. На рис. 3.1 показана функциональная схема системы, регулирующей положение фар («Бош»).

Рис 3.1. Функциональная схема системы, регулирующей положение фар («Бош»): 1- индуктивные датчики; 2- элементы сложения сигналов; 3- передний мост; 4- задний мост; 5- задатчики эталонного сигнала

Индуктивные датчики 1 воспринимают перемещение переднего и заднего мостов относительно кузова. Полученный электрический сигнал, характеризующий действительное положение моста относительно кузова, сравнивается с эталонным сигналом, установленным с учетом технических требований. Сигнал рассогласования, полученный в элементе сложения, усиливается и поступает к биметаллическому исполнительному органу. В зависимости от рассогласования биметаллический элемент нагревается и с помощью рычажной передачи поворачивает корпус фары во круг нижней точки крепления. Система регулирования устроена так, что положение фар не изменяется под воздействием колебаний ходовой части и кузова, возникающих из-за неровностей дороги. Добиться этого сравнительно легко, так как помеховые напряжения, имеющие высокую частоту, хорошо отделяются.

Не требуется коррекция положения фар на автомобилях с регулируемой подвеской, у которых поддерживается постоянная высота кузова, не зависящая от нагрузки.

  1. АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ СТЕКЛООЧИСТИТЕЛЕМ

Автомобильные стеклоочистители конструируются так, чтобы обеспечить водителю хорошую видимость даже во время дождя средней силы,

Длительная работа стеклоочистителя при моросящем дожде или слабом снеге затрудняется тем, что на ветровое стекло попадает недостаточное количество влаги. Вследствие этого увеличивается трение и износ щеток, увеличивается расход энергии на очистку стекла, что вызывает перегрев приводного двигателя. Возрастает вероятность появления царапин на ветровом стекле. Водитель вынужден периодически выключать стеклоочиститель на один-два такта, а затем снова включать. Это неудобно и небезопасно, так как внимание водителя на короткое время отвлекается от управления автомобилем. Современные стеклоочистители дополняются регуляторами тактов. Регулятор тактов через определенные промежутки времени автоматически отключает двигатель стеклоочистителя на один-два такта. Интервал между остановками стеклоочистителя можно изменять в пределах от 2 до 30 с. Регулятор тактов без труда может быть подключен к стеклоочистителям прежних моделей.

Рис. 4.1. Схема подключения электронного регулятора тактов регулятора к стеклоочистителю: 1 - двигатель стеклоочистителя; 2 - реле включения стеклоочистителя; 3 - регулятор тактов; S1 - выключатель стеклоочистителя

Подключение электронного регулятора тактов к имеющемуся стеклоочистителю показано на рис. 4.1. Двухскоростной двигатель 1 стеклоочистителя с возбуждением от постоянного магнита получает питание через контакты реле 2 при включении регулятора тактов 3 и оставленный прежний включатель S1. При выключении стеклоочистителя концевой выключатель S2 подает ток к якорю двигателя до его поворота на определенный угол, вследствие чего щетки стеклоочистителя останавливаются в парковом положении. Регулятор тактов 3 представляет собой включатель с электронным управлением, включенный параллельно имеющемуся включателю стеклоочистителя. Встречаются и такие механизмы стеклоочистителей, в которых после установки щеток в парковое положение затормаживается якорь двигателя. Торможение обычно осуществляется путем замыкания накоротко двигателя стеклоочистителя, поэтому рабочие контакты, управляемые реле регулятора тактов, должны сначала ликвидировать созданное короткое замыкание.

Электронный регулятор тактов по конструкции весьма сходен с задатчиком ритма электронных указателей поворотов. В обоих случаях астабильный мультивибратор выдает на выходе прямоугольные импульсы, однако коэффициенты заполнения импульсов (отношение ширины импульса к длительности периода) значительно различаются: для указателей поворота величина
и т.д.................

Современные автобусы и грузовые машины буквально «начинены» всевозможной электроникой. Микропроцессоры улучшают ходовые параметры ТС, снижают эксплуатационные расходы, повышают комфортабельность работы водителя и делают ТО более эффективным. Они воздействуют на:

  • Электрику: зажигание, освещение и прочие узлы.
  • Механику: мотор, ходовая часть и другие системы, отвечающие за управляемость и безопасность ТС.
  • Логистику: контроль работы техники, учет пассажиров.

Чтобы обеспечить сбор информации, на каждом автобусе или грузовике последних моделей устанавливается бортовая сеть, способная отправлять и получать сообщения по определенным наборам соглашений интерфейса. Официально они называются протоколами.

За счет подобной унификации процесса, различные электронные системы автомобилей, которых в машине может насчитываться до 10 штук, могут «понимать» друг друга. Если сообщение, отправленное по одному протоколу, надо конвертировать (преобразовать) в другой, то для этого имеются специальные шлюзы.

Бортовые системы электронного управления работой мотора или трансмиссии изначально монтировались на автомобиль заводом-изготовителем. Логистические компоненты (fleet management) довольно долго устанавливались сторонними организациями. Однако, на сегодняшний день, ведущие фирмы, такие как Scania или MAN, начали оборудовать стандартные версии своей техники и этими электронными системами автомобилей. Теперь передачу информации по беспроводной связи (GPS/GSM/WI-FI/RFID) о параметрах работы ТС на диспетчерский пункт обеспечивает Fleet management собственного производства.

Электронные системы автомобилей имеют достаточно большой расчетный срок службы. Он заметно превышает аналогичный показатель механических агрегатов и узлов и не зависит от пробега. Однако на практике продолжительность работы оказывается меньшей из-за воздействия влажности, вибрации и грязи. Если микропроцессоры выходят из строя, то качественную диагностику может выполнить только профессионал с необходимым оборудованием.

Нередко бывает так, что механики и водители не видят разницы между понятиями «электронный» и «электрический». К автоэлектрике относятся аккумуляторы, стартер, фары, электродвигатели для вентилятора и отопления, лампы накаливания, соединители, переключатели, проводка. Для управления ими в схему включаются электрические реле, которые срабатывают после определенного воздействия.

По мере усовершенствования транспортных средств, управление с помощью реле оказалось неэффективным. Вместо него появились устройства на микропроцессорах (ECU или ECM), с программным обеспечением и блоком памяти. Следующей ступенью развития бортовых электронных систем была их интеграция в единую управляющую систему.

После этого процесс стал выглядеть так. Например, во время переключения КПП, происходит обмен данными между ECU трансмиссии и ECU двигателя. В итоге мгновенно уменьшается крутящий момент, обеспечивая плавный переход на другую передачу.

Устройства разных изготовителей пользуются протоколами, от вида которых зависит степень интеграции. ECU двигателя получает команды от акселератора, датчиков температуры масла, антифриза, воздуха, турбокомпрессора, скорости. В результате топливная система моментально приспосабливается к изменившимся условиям и впрыскивает солярку в точно определенное время.

Благодаря этому, эффективность работы мотора увеличивается, а содержание вредных примесей в отработанных газах снижается. Кроме того, в памяти ECU двигателя хранятся параметры работы агрегата и коды неисправностей. После подключения микропроцессора к тестеру или ноутбуку, их можно считывать, для проведения точной диагностики.

ECU трансмиссии определяет момент изменения передаточных отношений. Этот микропроцессор тоже получает данные из разных источников: джойстика КПП, газовой педали, датчиков двигателя, скорости автомобиля и угловой скорости на выходном валу. В процессе «принятия решений» учитывается вес машины, мощность силового агрегата, вязкость и нагрев масла в КПП, коэффициент трения дисков сцепления. Результатом комплексной обработки полученных данных является последовательное и плавное переключение передач, благодаря чему экономится топливо.

ABS (антиблокировочная система) была разработана в 1975 году. Сегодня это штатное оборудование большинства современных автобусов и грузовиков. В ее задачи входит контроль скорости вращения колес при движении. Первые версии были ненадежными. Но алгоритмы и микропроцессоры все время совершенствовались, в результате чего на сегодняшний день ABS эффективно предотвращает блокировку после резкого нажатия на педаль тормоза. Это повышает управляемость ТС в критической ситуации. Система работает следующим образом. На каждом колесе есть датчик, посылающий информацию о скорости вращения на ECU ABS. Если значение данного параметра падает до нуля, ECU сигнализирует в тормозную систему о том, что надо снизить давление на тормозе этого колеса.

Давление сбрасывается, колесо начинает вращаться, ECU опять применяет торможение, после чего снова сбрасывает давление. Подобный цикличный процесс выполняется за очень малые промежутки времени и продолжается до полной остановки машины. Для повышения эффективности работы, ABS обменивается данными с системой контроля тяги (АТС).

Микроконтроллеры установлены даже на таких, казалось бы, «второстепенных» системах, как кондиционирование, вентиляция и отопление. Раньше, если в кабине было холодно, водитель просто нажимал на кнопку, чтобы включить печку. Становилось жарко - выключал ее или, опять-таки вручную, понижал степень нагрева. Сегодня комфортабельная температура в салоне поддерживается автоматически.

Этим занимается климат-контроль, который можно запрограммировать так, чтобы результаты отвечали потребностям водителя и пассажиров. Это более всего актуально в рефрижераторных фурах, внутри которых должна точно поддерживаться определенная температура. Единственный минус системы HVAC (Heating Ventilation Air-Conditioning) заключается в том, что ее диагностика пока еще достаточно трудоемкая.

Для объединения всех электронных систем автомобиля в единый комплекс предусмотрена мультиплексированная шина данных, которая заменяет несколько кабелей разного типа. Благодаря ей системы могут обмениваться друг с другом различной информацией. Они подключаются к шине по тому же принципу, как компьютеры в офисе присоединяются к локальной сети. Это еще одно важное отличие электроники от электрики, потому что в последнем случае от каждого устройства, фары или стартера, идет отдельный провод. Эти провода затем собираются в жгуты и выводятся на панель с управляющими реле.

Скорость движения и грузоподъемность ТС постоянно растет. Повышаются требования к безопасности движения, экологичности транспорта и комфорту работы водителя. Бортовые системы автомобилей - это незаменимые помощники, позволяющие современным грузовикам и автобусам соответствовать самым высоким стандартам.

Видео: Аренда спецтехники и услуги грузоперевозки без посредников!



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»