Лазерные лампочки для авто в фары. Лазерные фары: принцип работы и отзывы. Мал золотник, да ярок

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

" вызывало восхищение и уважение окружающих, а и подавно. Казалось бы, все уже придумано и развиваться автомобильной оптике больше некуда, однако создатели лазерных фар так не считают...

Светодиодные фары как, впрочем, и любые другие революционные для своего времени фары, до появления лазерных фар считались наиболее эффективным источником освещения, который по сей день активно используют автопроизводители в своих автомобилях. Кстати серийный выпуск могут сегодня позволить себе далеко не все автогиганты, как правило, такими фарами оснащаются автомобили премиум-сегмента.

С лазерными фарами все еще более сложно и запутано, эти фары являются достижением высоких технологий, а для их создания необходимы особые условия и множество различной электроники, которая собственно и создает лазерный луч . В данной области активно работают ведущие производители автомобильной светооптики такие как: Osram, Philips, Valeo, Bosch и Hella.

Кроме ведущих производителей источников освещения лазерными фарами очень заинтересованы автопроизводители. Так в 2011 году лазерные фары были представлены компанией BMW, которая продемонстрировала собственные достижения в этой области на своем концепте под кодовым названием i8. Тот, кто следит за событиями в BMW помнит, как через несколько лет концепт превратился в полноценный серийный суперкар.

Лазерные фары BMW i8 видео

Спустя еще несколько лет такие фары стали появляться на других моделях "БМВ". Лазерный модуль BMW был разработан инженерами компании Osram. Несмотря на дороговизну самой технологии, а также стоимость комплектующих и разработок, лазерные фары получили одобрение руководства, которое даже не смутил тот факт, что наличие лазерных фар существенно скажется на итоговой стоимости всего автомобиля. Более важным для разработчиков и руководителей проектов было первенство в данной области, а также то преимущество которое получит покупатель после покупки их детища.

Второй автогигант Audi - не менее активно работает в "лазерном направлении". Впервые лазерные фары получили Audi R18 E-Tron Quattro, а также концепт Audi Sport Quattro Laserlight. Характерным отличием лазерных фар производства "Ауди" является то, что активация лазерных модулей происходит на скорости 60 км/час и выше. До этой отметки дорогу освещают "обычные" .

Лазерная фара производства Audi состоит из четырех мощных лазерных диодов, их диаметр тела свечения равен – 300 микромет­рам. Эти диоды способны генерировать световой луч синего цвета с длиной волны порядка 450 нм. Благодаря специальному флуоресцентному преобразователю синее свечение превращается в белое (цветовая температура 5500 К). Такой свет по мнению производителей наиболее приятен для глаз и практически не вызывает усталости. Длина самого светового луча составляет порядка 500 метров.

В отличие от привычных нам источников света (лампы накаливания, газоразрядные лампы, светодиоды) лазерные фары обладают множеством "плюсов". Все начинается с того, что лазерное излучение монохромно и когерентно, другими словами волны постоянно одинаковой длины при постоянной разности фаз.

Перечислим плюсы лазерных фар

  • Это позволяет формировать пучок света, который очень близок по своей сути к параллельному, (дает возможность освещать конкретную зону).

  • Лазерный луч в десять сильнее по сравнению с галогенками, а также . Протяженность лазерного луча достигает отметки в 600 метров, при том, что обычный дальний свет может похвастаться только 200-300 мет­рами (а ближний и того хуже всего 60–85 метров).
  • Лазерные фары не слепит так как ксенон, поскольку луч света направлен строго в ту точку, которая должна освежаться. В случае попадания в область освещения живого существа, например, человека часть диодов тут же отключится и подсветит все кроме той области в которой находится живой объект.
  • Фары лазерные имеют на 30% меньшее энергопотребление нежели классические аналоги.
  • Компактность еще один "плюс" в пользу лазерных фар, их по праву можно смело назвать самыми компактными из всех сущест­вующих. Площадь светоизлучения лазерного диода в сто раз меньше по сравнению с обычным светодиодом, в этой связи при одинаковой светоотдаче лазерная фара требует отражателя размером всего 30 мм в диаметре (для сравнения у ксенона – 70 мм, у галогенок вообще - 120 мм). Такие способности лазерных фар позволили инженерам существенно уменьшить размер фар, не потеряв при этом а наоборот прибавив эффективности освещения.

Несколько слов о том, как это работает

Работать лазерный головной свет будет в тесном взаимодействии с компьютером, который руководствуясь данными с датчиков будет следить за тем, чтобы встречные автомобили и пешеходы не ослеплялись. Каждая лазерная фара содержит три диода излучающих световой луч мощностью около 1 Вт. Лучи посредством системы зеркал перенаправляются на флуоресцентный элемент после поглощения энергии последним, происходит выделение белого свечения, который формируется в световой луч.

В процессе разработки лазерных фар возникла еще одна новая технология под названием Dynamic Light Spot (в перевод с анг. - динамическое точечное освещение). Данная разработка позволяет обнаруживать пешеходов, а также другое препятствие на пути автомобиля посредством инфракрасной камеры. После того как система обнаружит преграду она автоматически подсвечивается более интенсивным светом, для того чтобы водитель мог обратить на нее внимание и безопасно его преодолеть. Что характерно, подсказка для водителя появляется с некоторым опережением, то есть до того, как объект будет подсвечен лучами ближнего света. Это необходимо для того чтобы обезопасить водителя и дать ему возможность подготовиться к выполнению тех или иных маневров и действий.

Лазерные фары Audi видео

Автомобильный свет развивается в строго устоявшихся направлениях, которые редко меняются. На сегодняшний день особый интерес у большинства водителей вызывает светодиодная оптика. У нее масса достоинств, которые не позволяют приблизиться к этому сегменту альтернативным решениям. И все же технологические разработки не стоят на месте, постепенно набирает популярность совсем другая концепция светоподачи. Это лазерные фары, которые привнесли принципиально новые качества в организацию оптического обеспечения современного автомобиля.

Принцип работы лазерной оптики

Если традиционные источники автомобильного света типа ламп накаливания и стандартных светодиодов обеспечивают в некотором смысле динамическое излучение, то лазер дает монохромное и когерентное рассеивание. Во многом этим и обуславливаются преимущества технологии. Несмотря на это, конструкция также базируется на диодах, за счет которых и функционируют лазерные фары. Принцип работы такой оптики основывается на том, что лазер выступает не источником освещения, а элементом энергообеспечения. За свет по-прежнему отвечают три светодиода с фосфорсодержащим веществом. Именно эта группа при поддержке лазера и формирует пучок света с нужными параметрами.

В процессе работы любых фар атомы активного вещества потребляют энергию, отдавая на выходе фотоны. В частности, классическая лампа накаливания содержит вольфрамовую нить, которая испускает свет по мере нагрева от электроэнергии. Изменение же конфигурации потребления энергии привело к тому, что лазерные фары головного света могут обеспечивать мощность, которая в десятки раз превышает потенциал

Положительные отзывы о лазерных фарах

Новая технология обеспечила сразу несколько преимуществ автомобильной оптике. Как уже отмечалось, даже у современного ксенона такая фара выиграет за счет мощности. И потребитель это подтверждает. Так, практика использования говорит о том, что сила лазерной системы в разы выше, чем у традиционных галогенок и светодиодов. Более точные расчеты указывают на то, что лазерные фары способны работать на 600 м вперед. Для сравнения, максимальный потенциал обычного дальнего света в лучшем случае достигает 400 м.

Но даже не в базовых рабочих качествах заключается главное преимущество лазерного света. Такой источник благодаря особому принципу работы облегчил процессы управления пучком света. Немногие пользователи, в частности, смогли опробовать новейшую систему интеллектуального управления динамическим лазерным светом. Однако, по словам специалистов, это направление развития оптики обещает массу новых возможностей. Достаточно сказать, что в последних моделях немецких автомобилей лазерный ориентируется на возможность точечной подачи луча. Таким образом, система автоматически отслеживает опасные зоны, акцентируя на них внимание водителя.

Негативные отзывы

Очевидные преимущества все же не исключают отрицательных моментов эксплуатации лазерных фар. Недостатки обуславливаются теми же особенностями, которыми обладают светодиоды. Так, пользователи отмечают, что в некоторых ситуациях свет чрезмерно слепит встречных водителей и вообще он непривычен, что может отвлекать других автолюбителей. Кроме того, в существующих модификациях лазерные фары стоят очень дорого и это важный момент, если учесть, что далеко не всегда их достоинства являются жизненно необходимыми.

Производители

Существует две категории производителей лазерных фар. С одной стороны, такие технологии вполне закономерно осваивают непосредственно изготовители автомобилей. Наиболее успешные разработки в сегменте демонстрируют компании Audi и BMW. Правда, в массовых моделях лазерная оптика пока фигурирует редко - такой оснасткой чаще обзаводятся в качестве опционального решения. И с другой стороны, лазерные фары выпускают передовые разработчики светодиодной техники. Можно отметить фирмы Philips, Osram и Hella, которые занимают лидирующие позиции в области проектирования новейших Что особенно интересно, в обеих категориях компании занимают узкоспециализированные ниши, продвигая уникальные технологические решения.

Как сделать лазерные фары своими руками?

О полноценном изготовлении лазерной фары с упомянутыми выше характеристиками речи быть не может, однако частичное внедрение диодов такого типа в автомобильную оптику может дать некоторый положительный результат. Так, многие домашние мастера предлагают технику изготовления лазерной указки для фары, основой в которой выступит диод из привода DVD-RW. Лазер интегрируется в нишу стоп-сигнала или с коррекцией луча посредством холодной сварки. Для ограничения длины потока можно применить трафарет, который повторит форму нужного луча. Поэтому еще перед началом изготовления следует определиться с теми, какими характеристиками должны обладать лазерные фары. Своими руками коррекционную основу можно выполнить из картона, оставив окошко подходящего размера. Обычно делают фары из расчета подачи луча в 1,5 м при условии обеспечения 4-метровой проекции.

Заключение

В разных сферах технологического улучшения автомобилей происходят процессы активного внедрения интеллектуальных систем. Оптическая конфигурация даже в современных поколениях проектируется с большим упором на обеспечение основных характеристик светоподачи. Оптимальные свойства излучения уже были достигнуты на примере стандартных светодиодов. В свою очередь, лазерные фары головного света наряду с повышением эксплуатационных качеств оптики также позволили разработчикам освоить и новые принципы управления светом. Пока еще не в массовом производстве, но на примерах концептуальных машин передовые компании демонстрируют впечатляющие примеры автоматизации лазерных фар. По словам специалистов, работа в этом направлении должна не только улучшить взаимодействие водителя с фарами, но и в целом повысить эргономику управления машиной и уровень безопасности.

Прикосновение к будущему, первое знакомство с тем, что скоро станет обыденностью. Вот что такое лазерные фары. Реально в качестве дополнительного оборудования пока их предлагают только для BMW i8, а серийно ими оснастили 99 экземпляров суперэксклюзивного Audi R8 LMX. Обозначение модели как бы намекает на Ле-Ман, и неспроста. С одной стороны, это дань 15-летию победы в известной 24-часовой гонке, с другой — прямое указание на техническое решение, которым до сих пор мог похвастать только «боевой» R18. Quattroruote решил проверить, как работают лазерные фары и чем они хороши. Для этого R8 приехал на ночные тесты.

Новое слово автомобильной науки всего лишь дополняет традиционное освещение: если верить изготовителю, лазерные фары позволяют осветить дорогу на 500-600 м. В каждой фаре установлено четыре светодиода, излучающих свет с длиной волны 450 нанометров. Свет концентрируется фосфорным отражателем, изменяющим цвет луча с синего на белый. В результате получается мощный пучок света, по температуре приближающегося к дневному: 5500 Кельвинов.

До полукилометра

Расставив на прямом участке трека щиты через каждые 100 м, делаем несколько заездов. От наших испытателей, собственно, ничего особенного не требуется: две дополнительные фары включаются по команде электроники, управляющей дальним светом. Вводные же электроника получает от установленной на ветровом стекле телекамеры, которая следит за дорогой.

На практике оказалось, что лазерные фары включаются только на скоростях выше 60 км/ч, только на неосвещенных участках и только при условии, что впереди нет попутных и встречных автомобилей. Как только камера замечает на обочине включенный фонарь, электронная система автоматически переходит на ближний свет: фары светодиодные, и их вполне хватает. Когда же система, наконец, решает, что пора, сначала включаются обычные фары дальнего света (они сами по себе гарантируют видимость на расстоянии до 300 м), а через мгновение дорогу заливает дальнобойный свет лазерных прожекторов.

Результат поразительный. Мы не можем безоговорочно подтвердить, что дорога, как это заявляет производитель, освещается на 600 м, но что луч света уходит за полкилометра — факт. Ну и, конечно, ощущения: когда работают лазерные фары, контроль над дорогой полный. Исключительно из любопытства (на дороге это делать категорически не следует) мы решили проверить, насколько быстрее позволяют ехать лазерные фары. В качестве точки отсчета взяли собственные ощущения при движении на скорости 130 км/ч со светодиодными фарами.

Потом включили лазерные. Прикинули, посчитали и пришли к выводу, что новое изобретение позволяет контролировать дорогу ничуть не хуже на скоростях до 260 км/ч и даже больше.

Не говоря об ограничениях, которые накладывает закон, и о здравом смысле, мы считаем, что есть вполне убедительная причина не повторять подобные экзерсисы на дорогах общего пользования: если телекамера вдруг обнаружит, что навстречу едет другой автомобиль, система моментально выключит лазеры. Оказаться на темной дороге на такой скорости с одними светодиодами — участь незавидная.



Последние достижения

В увлекательном мире автомобильного света уже несколько месяцев как появилась еще одна новинка. Вещь дорогая, эксклюзивная, хотя и гораздо дальше, чем лазерные фары, отстоящая от области научной фантастики. Мы ведем речь о светодиодных матрицах. Впервые такие появились несколько месяцев назад на рестайлинговом Audi А8, а сегодня их предлагают и для моделей пусть недешевых, но все же более доступных, вроде ТТ. По тому же пути идут и конструкторы из Штутгарта.

В данном случае речь идет не о количестве испускаемого света — по этому показателю матричные фары ничем не отличаются от обычных светодиодных, — а о том, как этим количеством управлять. Включаются фары дальнего света, когда соответствующую команду выдает камера на ветровом стекле. При этом, если по встречной полосе приближается другой автомобиль, дальний свет не выключается. Возможно такое? Да, возможно: выключаются только светодиоды, которые теоретически способны ослепить водителя встречного транспортного средства. Остальная часть дороги остается освещенной, а на полосе, по которой движется встречный автомобиль, образуется темное пятно, которое перемещается вместе с ним.

Этакий прожектор наоборот: темная зона в центре участка, ярко освещенного фарами дальнего света. Но это не все: система способна одновременно отслеживать несколько «мишеней», создавая комфортные зоны, например, для водителей двух автомобилей и мотоцикла, двигающихся по встречной полосе, плюс для водителя попутного автомобиля,следующего впереди. Для матричных фар это не проблема, темных пятен может быть несколько. Ну а если вдруг в темной зоне система обнаружит человека, она предупредит об этом водителя: сначала три раза ярко мигнет, а потом осветит фигуру.

Лазерные фары видно далеко

Чтобы понять, на что способны лазерные фары, достаточно взглянуть на приведенную ниже схему и сравнить освещаемую ими зону с зонами, которые освещаются фарами ближнего и дальнего света (речь идет о светодиодных фарах последнего поколения). Следует заметить, что пучок света лазерных фар гораздо уже, чем мы привыкли.

  • Фары ближнего света «бьют» примерно на 150 м. Пучок их света асимметричен, встречная полоса не освещается.
  • Фары дальнего света, как ксеноновые, так и светодиодные, освещают дорогу перед автомобилем на 200-300 м.
  • При небольшом тумане (что для нашего полигона в итальянском Ваирано в определенное время года не редкость) сразу заметен своеобразный острый и резкий свет лазерных фар.

Дальность света лазерных фар согласно документации производителя может достигать 600 м. Обратите внимание на форму светового пятна — оно узкое и длинное.

Эксклюзив во всем

На заказ лазерные фары предлагают для BMW i8. Именно на этой модели они дебютировали в 2013 году. Как это возможно, если продажи фар только начинаются? Все просто: в июне 2013 года лазерные фары были в эксклюзивном порядке установлены на восьми первых серийных экземплярах немецкого спорткара, переданных счастливым владельцам в ходе специально устроенной в Мюнхене церемонии. В техническом плане решение мало чем отличается от того, что мы видели на Audi R8, да и поставщик у BMW тот же — Osram. На i8 лазерные фары дальнего света тоже установлены не вместо традиционных, а в дополнение к ним, и включаются лишь при наличии соответствующих условий. Ну а вам мы предоставляем полную свободу в выборе выражений, уместных в отношении цены опции -9750 евро (в Европе).

Матричные фары. Игра свети и тени



Здесь задачи другие: не светить, как лазер, как можно дальше, а уберечь других участников движения от ослепления дальним светом. Сначала матричные фары ставили только на А8, но по прошествии нескольких месяцев подход стал более демократичным: сегодня, к примеру, их можно заказать и для ТТ последнего поколения. Правда, опция не дешевая — 2585 евро (в Европе).

  • Несмотря на наличие встречного автомобиля, эта зона остается полностью освещенной.
  • Темная зона перемещается вместе со встречным автомобилем.
  • Серая зона, ограниченная пунктирной линией, освещена фарами ближнего света.
  • Система распознает и автомобили, движущиеся в попутном направлении. Чтобы не слепить их водителей, матричные фары также создают темные зоны.
  • Матричные фары — это 25 светодиодов, которые по команде электроники включаются, выключаются или просто снижают яркость.

Mersedes тоже выбрал матрицу

В 2010 ГОД У Mercedes CLS второго поколения стал первым в мире автомобилем, у которого в фонарях и фарах стояли только светодиоды. После недавнего рестайлинга штутгартский седан обзавелся опцией Active Multibeam Led — такие же матричные фары, как у Audi, и работают они по тому же принципу. Управление фарами осуществляется раздельно, что позволяет точно контурировать освещаемые и неосвещаемые участки перед автомобилем. Светодиоды корректируют размеры темных пятен очень быстро и точно, при этом левая и правая фары работают независимо друг от друга. Каждую секунду электронные блоки сто раз рассчитывают оптимальную конфигурацию светового пятна. Исходную информацию система получает от камеры, размещенной в верхней части ветрового стекла. Как правило, система Active Multibeam Led предлагается в качестве опции. Исключение составляют модификации AMG, штатно оснащаемые матричными фарами.

Лазеры стали неотъемлемой частью нашей повседневной жизни еще в конце 1980-х с изобретением компакт-дисков и оптических приводов. С тех пор мы знаем, что лазеры могут быть очень полезны. Знаем мы также и то, что их излучение не всегда видимо глазу, но способно нанести серьезную травму при прямом попадании. А также то, что лазеры используются в хирургии в качестве скальпеля, а на промышленных производствах запросто режут металл. Все это как-то не вяжется с приятным глазу светом, разверзающим тьму на ночном шоссе.

Секрет в том, что в лазерных фарах собственно лазер служит вовсе не источником света, а поставщиком энергии. Принцип действия любого источника света состоит в том, что атомы излучающего вещества поглощают энергию и испускают фотоны. К примеру, в лампе накаливания вольфрамовая нить нагревается за счет электрической энергии.

Фото демонстрирует преимущество лазерного дальнего света (справа) перед светодиодным (слева). В свете лазерных фар становятся хорошо заметны объекты на расстоянии 600 м от машины, тогда как предел возможности LED-фар — 300 м. При движении днем водитель может видеть предметы на расстоянии до 2 км.

В лазерной фаре BMW i8 три лазерных светодиода создают когерентное (однонаправленное) излучение в голубой области спектра. Мощность этого излучения в десять раз превышает мощность ксеноновой фары. С помощью системы зеркал несколько лазерных лучей фокусируются на линзе, покрытой фосфоросодержащим флуоресцентным составом. Именно этот состав, поглощая энергию лазеров, излучает приятный глазу белый видимый свет.

Яркость такой фары, пусть и не десятикратно, но все же весьма значительно превышает яркость ксеноновых или светодиодных фар. Дальность действия лазерной фары достигает 600 м, в то время как предел возможностей LED-фары — всего 300 м.


Один из демонстрационных прототипов лазерной фары BMW. Дым позволяет увидеть лазерные лучи, направленные на флуоресцентную пластину с помощью системы зеркал. Каждая фара использует энергию трех голубых лазеров.


Мал золотник, да ярок

Лазерная технология предлагает ряд веских конструктивных преимуществ. К примеру, размер рефлектора — вогнутого зеркального отражателя, формирующего световой пучок нужной формы, — напрямую зависит от размеров источника света. Для галогеновой фары необходим как минимум 120-миллиметровый рефлектор, для ксеноновой достаточно 70-миллиметрового. Этим отчасти объясняется тот факт, что для многих автомобилей премиум-класса доступны лишь ксеноновые или светодиодные фары: их дизайн не допускает применения крупной галогеновой оптики.

Флуоресцентная субстанция в лазерной фаре — это практически точечный источник света, для которого достаточно 30-миллиметрового рефлектора. А значит, лазерная оптика может быть очень компактной, что непременно оценят дизайнеры.


Конструкция реальной фары, устанавливающейся на BMW i8, несколько отличается от прототипа, однако принцип действия остается неизменным. Три лазерных светодиода поставляют энергию на фосфоросодержащее вещество, а компактный рефлектор формирует из света точечного источника пучок нужной формы.

Пожалуй, самый существенный недостаток светодиодов — это склонность к перегреву. Значительная часть потребляемой ими энергии расходуется на выделение бесполезного тепла, которое необходимо рассеивать с помощью массивных радиаторов и дорогостоящих вентиляторов. Мало того, интенсивность свечения и долговечность светодиода зависят от рабочей температуры, поэтому сложные интеллектуальные системы охлаждения становятся неотъемлемой частью LED-фар.

Лазерный диод — очень эффективный источник энергии. Он не склонен к перегреву, и для его охлаждения достаточно компактного пассивного радиатора. Это значит, что лазерная оптика экономит драгоценное подкапотное пространство, несколько килограммов веса и весьма значительное количество топлива.


К сожалению, мы вряд ли скоро увидим лазерные фары на автомобилях массового сегмента. И помимо имиджевых соображений для этого есть весьма веские объективные причины. Яркость, а значит, и ослепляющая способность «лазерного» света как минимум вдвое больше, чем у любых современных аналогов. Следовательно, фары такого типа могут применяться только совместно с технологиями «неослепляющего» дальнего света и контроля уровня, которые сами по себе весьма дороги. В глаза встречным водителям ни в коем случае не должен попасть ближний свет авто, показавшегося из-за перегиба дороги, или включенный по ошибке «дальний».

На случай аварии предусмотрена система, отключающая лазеры при разрушении фары: все-таки прямое попадание лазерного луча может представлять опасность.

Прицельный огонь

Согласно статистике, многие водители пользуются дальним светом в исключительно редких случаях, а некоторые не пользуются совсем. Это связано с нежеланием отслеживать появление на дороге встречных автомобилей и постоянно переключаться на «ближний». Между тем на скорости 100 км/ч ближний свет обеспечивает видимость в пределах 70−80 м, в то время как остановочный путь может превышать эту величину.


Так на ночной дороге выглядит животное, подсвеченное узким лучом дальнего света. Яркий мерцающий луч не только оповещает водителя об опасности, но и делает сам автомобиль хорошо заметным.

«Неослепляющий» дальний свет уже прочно обосновался в списках опций люксовых автомобилей. Напомним, что водители машин, оборудованных данной системой, могут не выключать дальний свет даже при появлении встречных авто. Специальный механизм внутри фары меняет свет с дальнего на ближний лишь в узком секторе, в который попадает встречный автомобиль. Остальная часть дороги, включая попутные и встречные полосы, а также обочины, остается освещена «дальним».

Чтобы реализовать эту полезную функцию, производители используют два противоположных подхода. Первый заключается в наличии масок, затеняющих ту или иную часть светового пучка. Маски приводятся в движение быстрыми сервомоторами с точностью позиционирования до 0,1°. Моторы управляются компьютером, который анализирует изображение с высокочувствительной видеокамеры. К таким системам относится, к примеру, BMW Selective Beam.


Применение отдельных источников света (светодиодов) для освещения узких секторов дороги дает возможность избавить от ослепления водителей сразу нескольких встречных или попутных автомобилей, при этом освещая участки между ними ярким дальним светом.

Второй подход предполагает использование отдельных источников света (ксеноновых ламп или светодиодов) для освещения каждого сектора дороги. Противники данной концепции упрекают ее в ощутимом падении общей яркости при отключении отдельных сегментов или в избыточной ширине теневой зоны.

Вряд ли в этом можно упрекнуть фары Audi Matrix LED, опционально устанавливаемые на последнее поколение седана A8. За дальний свет в них отвечают 25 мощных светодиодов, скомпонованных в пяти рефлекторах. Это означает, что пучок дальнего света делится аж на 25 узких секторов, и, управляя ими, можно точно затенять очень узкие участки.

Важное преимущество Matrix LED заключается в способности затенять сразу несколько встречных автомобилей, сохраняя полосы дальнего света между ними. Такая возможность недоступна для фар с моторизированными масками.


Если переключатель света на A8 установлен в положение auto, дальний свет автоматически включается на скорости свыше 30 км/ч за городом и свыше 60 км/ч в населенных пунктах. Для того чтобы отличить проселочные дороги от городских, система обращается за подсказкой к спутниковому навигатору.

Одна из последних модных функций, доступная для обоих типов неослепляющих фар, — подсветка людей и животных при движении с ближним светом. Это стало возможно благодаря появлению на автомобилях представительского класса приборов ночного видения. Если такой прибор обнаруживает человека или животное на дороге или обочине, он посылает в соответствующем направлении узкий мигающий луч дальнего света. Этот «маяк» не только указывает водителю на опасность, но и предупреждает пешехода или зверя о приближении транспорта.


На периферии

Инновации затрагивают не только фары головного света, но и вспомогательные световые приборы — габаритные огни, стоп-сигналы, указатели поворотов. К примеру, «поворотники» на той же Audi A8 представляют собой линии из 18 светодиодов спереди и 24 сзади. Они загораются не одновременно, а друг за другом, имитируя движение светящейся линии в сторону поворота.

Любопытно, что «мультипликационные» указатели поворотов вполне вписываются в обычные правила: ведь, загоревшись по очереди с 20-миллисекундным интервалом, огни остаются зажженными в течение еще 250 миллисекунд, а затем гаснут, как и предписано стандартом.

На автомобилях будущих поколений место габаритных огней, а также внутрисалонных осветительных приборов займут органические светодиоды OLED. В отличие от обычных светодиодов, представляющих собой точечный источник света, OLED — это тонкая пленка, излучающая свечение по всей площади. На единицу площади OLED приходится гораздо меньшая тепловая нагрузка и яркость, что, в свою очередь, означает экономию и пространства, и электроэнергии, и в конечном счете — топлива.



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»