Ремонт электронных систем. Какие электронные системы установлены в современных машинах Системы управления двигателем

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Применение электронных систем автоматического управления (ЭСАУ двигате­лем, трансмиссией, ходовой частью и дополнительным оборудова­нием) позволяет:

    снизить расход топлива;

    ток­сичность отработавших газов,

    повысить мощность двигателя,

    актив­ную безопасность автомобиля,

    улучшить условия труда водителя.

Соблюдение требований ограничивающих токсичность отрабо­тавших газов и расход топлива требует поддержания стехиометрического состава горючей смеси, отключения подачи топлива на режиме принудительного ХХ, точного и оптимально­го регулирования момента зажигания или впрыска топлива.

Вы­полнения этих требований невозможность без использования ЭСАУ.

Применяемые ЭСАУ двигателем включают системы управления:

    топливоподачей,

    зажиганием (в бензиновых двигателях),

    клапана­ми цилиндров,

    рециркуляцией отработавших газов.

Наибольшее распространение получили первые две системы.

Системы управления клапанами применяются для отключения группы цилиндров с целью экономии топлива и для регулирования фаз газораспределения. Системы управления рециркуляцией отра­ботавших газов обеспечивают возврат во впускной трубопровод потребного количества отработавших газов для смешивания их со свежей горючей смесью.

ЭСАУ облегчает пуск холодного двигателя, уменьшает время прогрева перед движения.

Антиблокировочные системы позволяют уменьшить в 2 раза тормозной путь на скользкой дороге, исключая воз­никновения заноса.

6.2. Электронное управление двигателем

Электронные системы управления топливоподачей бензиновых двигателей

Применение электронных систем автоматического управления (ЭСАУ) топливоподачей бензиновых двигателей обусловлено не­обходимостью снижения токсичности отработавших газов и повы­шения топливной экономичности двигателей внутреннего сгорания. ЭСАУ позволяют в большей степени оптимизировать процесс сме­сеобразования и делают возможным применение трехкомпонент­ных нейтрализаторов, эффективно работающих при постоянном коэффициенте избытка воздуха а близком к 1.

Кроме того, ЭСАУ двигателем, позволяют повысить приеми­стость автомобиля, надежность холодного пуска, ускорить прогрев и увеличить мощность двигателя.

ЭСАУ топливоподачей бензиновых двигателей разделяют на сис­темы впрыска (во впускной трубопровод или непосредственно в камеру сгорания) и карбюраторные системы с электронным управлением.

Принцип действия системы электронного управления карбюра­тором заключается в согласованном управлении воздушной и дрос­сельной заслонками.

Так система Ecotronic фирмы Bosch поддерживает на большинст­ве режимов стехиометрический состав рабочей смеси, обеспечивает необходимое обогащение смеси на режимах пуска и прогрева двига­теля. В системе предусмотрены функции отключения подачи топлива на принудительном холостом ходу и поддержания на заданном уров­не частоты вращения коленчатого вала на холостом ходу.

Наибольшее распространение получили системы впрыска во впускной трубопровод. Они разделяются на системы с впрыском в зону впускных клапанов и с центральным впрыском (рис. 6.1, где: а - центральный впрыск; б - распределенный впрыск в зону впускных клапанов;в - непосредственный впрыск в цилиндры двигателя; 1 - подача топлива; 2 - подача воздуха; 3 - дроссельная заслонка; 4 - впускной трубопровод; 5 - форсунки; 6 - двигатель).

Система с впрыском в зону впускных клапанов (другое название распределенный или многоточечный впрыск) включает в себя ко­личество форсунок равное числу цилиндров, система с централь­ным впрыском - одну или две форсунки на весь двигатель. Форсун­ки в системах с центральным впрыском устанавливаются в специ­альной смесительной камере, откуда полученная смесь распреде­ляется по цилиндрам. Подача топлива форсунками в системе рас­пределенного впрыска может быть согласована с процессом впуска в каждый цилиндр (фазированный впрыск) и несогласованна - форсунки работают одновременно или группой (нефазированный впрыск).

Системы с непосредственным впрыском из-за сложности конст­рукции долгое время не применялись на бензиновых двигателях. Однако ужесточение экологических требований к двигателям дела­ет необходимым развитие этих систем.

Современные ЭСАУ двигателем объединяют в себе функции управления впрыском топлива и работой системы зажигания, по­скольку принцип управления и входные сигналы (частота вращения, нагрузка, температура двигателя) для этих систем являются общими.

В ЭСАУ двигателем используется программно-адаптивное управление. Для реализации программного управления в ПЗУ бло­ка управления (БУ) записывается зависимость длительности впры­ска (количества подаваемого топлива) от нагрузки и частоты вра­щения коленчатого вала двигателя. На рис. 6.2 представлена обобщенная регулировочная характеристика бензинового двигателя по составу смеси.

Зависимость задается в виде таблицы (характеристической карты) разработанной на ос­новании всесторонних испытаний двигателя. Данные в таблице представлены с определенным шагом, например 5 мин -1 , промежуточные значения БУ получает интерполяцией. Аналогичные табли­цы используются и для определения угла опережения зажигания. Выбор данных из готовых таблиц является более быстрым процес­сом, чем выполнение вычислений.

Непосредственное измерение крутящего момента двигателя на автомобиле связано с большими техническими трудностями, по­этому основным датчиком нагрузки являются датчики расхода воз­духа и (или) датчик давления во впускном трубопроводе. Для опре­деления частоты вращения коленчатого вала двигателя обычно используется счетчик импульсов от датчика положения коленчатого вала индукционного типа или от датчика-распределителя системы зажигания.

Полученные по таблицам значения корректируются в зависимо­сти от сигналов датчиков температуры охлаждающей жидкости, по­ложения дроссельной заслонки, температуры воздуха, а также на­пряжения бортовой сети и других параметров.

Адаптивное управление (управление по обратной связи) исполь­зуется в системах с датчиком кислорода (λ-зондом). Наличие ин­формации о содержании кислорода в отработавших газах позволя­ет поддерживать коэффициент избытка воздуха а (λ) близким к 1. При управлении топливоподачей по ОС БУ первоначально определяет дли­тельность импульсов по данным датчиков нагрузки и частоты вращения КВ двигателя, а сигнал от датчика кислорода используется для точной корректировки. Управление впрыском то­плива по обратной связи осуществляется только на прогретом дви­гателе и в определенном диапазоне нагрузки.

Принцип адаптивного управление применяется также для ста­билизации частоты вращения коленчатого вала в режиме холостого хода и для управления углом опережения зажигания по пределу детонации.

Современные ЭСАУ топливоподачей бензиновых двигателей имеют функцию самодиагностики. БУ проверяет работу датчиков и исполнительных устройств и идентифицируют неисправности. При обнаружении неисправности БУ заносит в память соответствующий код и включает аварийную лампу CHECK ENGINE на панели приборов.

Диагностический прибор позволяет получать информа­цию от БУ:

    считы­вать коды неисправностей;

    определять текущие зна­чения параметров двигателя,

    активизировать исполнительные меха­низмы.

функции диагностического прибора ограничены возможностями БУ.

Применение ЭСАУ повышает надежность работы двигателя за счет обеспечения возможности его работы в «усеченном» режиме. В случае возникновения неисправности в одном или нескольких датчиках, БУ определяет, что их показания не соответствуют действительности и отключает эти датчики. В «усеченном» режиме ра­боты информация от неисправных датчиков замещается эталон­ным значением или косвенно рассчитывается по данным от других датчиков. Например, при неисправности датчика положения дрос­сельной заслонки его показания можно имитировать расчетом по частоте вращения коленчатого вала и расходу воздуха. При выходе из строя одного из исполнительных механизмов используется ин­дивидуальный алгоритм обхода неисправности. При дефекте в це­пи зажигания, например, отключается впрыск в соответствующий цилиндр, с целью предотвращения повреждения каталитического нейтрализатора.

При работе двигателя в «усеченном» режиме возможно сниже­ние мощности, ухудшение приемистости, затрудненный пуск холод­ного двигателя, увеличение расхода топлива и др.

Для компенсации технологического разброса в характеристиках элементов ЭСАУ и двигателя, учета их изменения при эксплуата­ции в программе БУ предусмотрен алгоритм самообучения. Как упоминалось выше, сигнал от датчика кислорода используется для корректировки значения длительности впрыска полученного по таб­лице из ПЗУ БУ. Однако при значительных расхождениях такой процесс занимает много времени.

Самообучение заключается в сохранении в памяти БУ значений коэффициента корректировки. Весь диапазон работы двигателя разбивается, как правило, на четыре характерные зоны обучения:

холостой ход, высокая частота вращения при малой нагрузке, час­тичная нагрузка, высокая нагрузка.

При работе двигателя в любой из зон, происходит корректировка длительности импульсов впрыска до тех пор, пока реальный состав смеси не достигнет оптимального значения. Полученные таким об­разом коэффициенты корректировки характеризуют конкретный двигатель и участвуют в формировании длительности импульса впрыска на всех режимах его работы. Процесс самообучения при­меняется также для управления углом опережения зажигания при наличии обратной связи по детонации. Основная проблема функ­ционирования алгоритма самообучения заключается в том, что ино­гда неправильный сигнал датчика может быть воспринят системой как изменение параметра двигателя. Если ошибка сигнала датчика недостаточно велика, чтобы был зарегистрирован код неисправно­сти, повреждение может остаться необнаруженным. В большинстве систем корректирующие коэффициенты не сохраняются при отклю­чении питания БУ.

Что скрывается за аббревиатурами, обозначающими электронные системы автомобиля

Электронные системы управления автомобилем

AAR — Автоматическая рециркуляция воздуха.

Антиблокировочная тормозная система. Помогает избежать блокировки колес при внезапном торможении или при торможении на скользкой дороге.

ADB — автоматически блокируемый дифферинциал. При пробуксовке одного колеса передает часть момента вращения на другое, улучшая проходимость.

ASC - Automatische Stabilitats Control. Антипробуксовочная система.

ASC+T — Система автоматического контроля устойчивости с регулятором тяги (ASC+T) предотвращает пробуксовку задних ведущих колес и обеспечивает надежное сцепление шин с дорогой и великолепную траекторную устойчивости. Если колесу грозит пробуксовка, например, при трогании с места или ускорении на выходе из поворота, то система управления двигателем снижает момент привода. Если этого оказывается недостаточно, то буксующее колесо или колеса автоматически подтормаживаются до тех пор, пока не восстановится нормальное сцепление шин с дорогой.

ASR — Antriebs-Schlupf-Regelung — Автоматика противоскольжения (автоматическое регулирование ведущих колес по их буксованию.

A-TRC (Active Traction Control) — активная антипробуксовочная система. A-TRC — более интеллектуальная версия традиционной антипробуксовочной системы. Она не позволит автомобилю буксовать даже при самых неблагоприятных условиях движения (как по дороге, так и по бездорожью). A-TRC автоматически обнаруживает пробуксовку ведущего колеса, подтормаживает его и снижает передаваемый на него крутящий момент, распределяя его между остальными тремя колесами. В результате на ведущие колеса, обладающие лучшим сцеплением с дорожным покрытием, всегда передается оптимальный крутящий момент. В сложнейших дорожных условиях система A-TRC практически заменяет собой блокировку дифференциалов, при этом колеса автомобиля не тормозятся так сильно на крутых поворотах. Совместная работа систем A-TRC и VSC обеспечивает отличную управляемость автомобиля при движении по очень скользкой дороге.

AUC —система контроля загрязнения наружного воздуха BMW позаботится о чистоте воздуха в салоне. Система распознаёт в наружном воздухе, например, оксид углерода, оксиды азота, этанолы и прекращает при их повышенной концентрации поступление воздуха в салон, переключая на некоторое время автоматический кондиционер на рециркуляционный режим.

BA (Brake Assist) - усилитель тормозов. Усилитель тормозов обеспечивает аварийное торможение в случае, когда водитель нажимает на педаль тормоза резко, но недостаточно сильно. Для этого система измеряет насколько быстро и с каким усилием нажата педаль, после чего, при необходимости, мгновенно повышает давление в тормозной системе до максимально эффективного. Вспомогательное усиление является едва заметным и лишь добавляет Ваши собственные действия.

CBC — система контроля торможения на поворотах.

D-4 — технология непосредственного впрыска топлива для бензиновых двигателей. Топливо впрыскивается под высоким давлением непосредственно в камеру сгорания. За счет применения этой технологии улучшаются эксплуатационные характеристики двигателя, уменьшается расход топлива и снижается уровень выбросов вредных веществ.

DAC (Downhill Assist Control) — система помощи при спуске по склону. На крутых спусках, когда система DAC обнаруживает, что скорость автомобиля больше скорости вращения колес, она автоматически изменяет тормозное усилие на отдельных колесах. Таким образом, система DAC поддерживает постоянную скорость в диапазоне 5-7 км/ч - идеальную для управляемого спуска с крутого склона. Система DAC также включается и при спуске задним ходом, но в этом случае она поддерживает скорость в пределах 3-5 км/ч.

DI Direct Injection — непосредственный впрыск. Вnpыск топлива непосредственно в камеру сгорания обеспечивает его лучшее сгорание, но вместе с тем большую шумность и вибронагруженность. В настоящее время получает все большее распространение.

DOHC Double Overhead Camshaft — два распределительных вала в головке. Аббревиатура, обозначающая распространенную схему газораспределительного механизма.

DME - Digital Motor-Elekronik или Motronik — Цифровая система управления .

DBC — Dynamic Brake Control — система регулирует тормозные усилия в зависимости от нагрузки на оси. Распознает экстренное торможение и самостоятельно включает тормоза на полную мощь.

DSC Dynamic Stability Contro l. Аббревиатура, используемая "BMW" для обозначения электронной системы стабилизации автомобиля. То же что и ESP.

DTC — Dynamic Traction Control — противобуксовочная система.

EBD (Electronic Brake Distribution) - система электронного распределения тормозного усилия. Работает в комплексе с системой ABS, обеспечивая с помощью электроники равномерное распределение тормозного усилия между всеми четырьмя колесами, чтобы обеспечить каждому из них оптимальное сцепление с дорогой.

EDC — Система электронной регулировки жесткости амортизаторов (EDC) моментально подстраивает жесткость амортизаторов BMW в зависимости от состояний дорожного полотна, загрузки автомобиля и условии движения. Электронный управляющий блок определяет, исходя из колебаний автомобиля, оптимальный уровень амортизации. При трогании с места, торможении и изменении направления движения он выше, а при спокойной поездке ниже. Наряду с автоматической подстройкой Вы можете нажатием клавиши установить более жесткий, спортивный вариант настройки.

EGR — система дожигания топлива для уменьшения вредных примесей в выхлопных газах.

ЕНВ Электронно-гидравлическая тормозная система. Управляемая электроникой тормозная система, в которой рабочее давление создается не ногой водителя, а насосом. На педали устанавливается специальный датчик.

EMV Электромагнитная совместимость. В автомобиле и вне его имеется большое количество источников электромагнитного излучения и электронных приборов, которые могут влиять на работу друг друга — от системы зажигания до мобильного телефона и приемника. Чтобы изучить и уменьшить это влияние, проводят специальные испытания.

EON Enhanced Other Network — дословно усиленная другая сеть. Функция автомобильного аудиоборудования, когда аудиосистема автоматически переключается на радиостанцию, передающую сообщение о ситуации на дорогах, а по окончании сообщения возвращается к прежней настройке.

ESP Electronic Stability Program — аббревиатура, используемая "Daimler Chrysler" и некоторыми другими компаниями для обозначения электронной системы стабилизации автомобиля. Используя штатную тормозную систему автомобиля, обеспечивает сохранение курсовой и траекторной устойчивости в . Если, например, автомобиль в повороте проявляет склонность к заносу, то система подтормаживает наружное к повороту переднее колесо. А при сносе передних колес притормаживает внутреннее заднее. В последнее время электронные системы стабилизации получают все более широкое распространение, причем не только в дорогих автомобилях.

ETS/ETC — Electronic Traction Support (Control). Система антипротивобуксовочного контроля. Электронное управление тягой.

FSI (Fuel Stratified Injection) — система непосредственного послойного впрыска топлива (аналог японской GDI).

GPS Global Positioning System — спутниковая система, позволяющая определять местоположение объекта с точностью метра до 10. GPS — приемники являются основой большинства современных навигационных систем.

HAC (Hill-start Assist Control) — система помощи при подъеме по склону. Она позволяет безопасно и без потери управляемости начинать движение вверх по крутому и скользкому склону и немедленно информирует водителя о скатывании автомобиля вниз. Когда система обнаруживает пробуксовку одного или нескольких колес, она автоматически перераспределяет крутящий момент таким образом, чтобы восстановить сцепление с шин с поверхностью. Очень важно, что колеса, шины которых имеют нормальное сцепление с поверхностью дороги, периодически подтормаживаются, чтобы восстановить контакт с дорожным покрытием шин буксующих колес. Это позволяет водителю не потерять контроль над автомобилем.

НС Hydrocarbone — углеводород. Углеводороды — органические соединения, молекулы которых состоят из атомов углерода и водорода. Общая химическая формула углеводородов — СН. В применении к автомобильным двигателям под СН чаще всего понимают опасные для здоровья несгоревшие углеводороды, присутствующие в отработавших газах.

Head-up-Display Проецирование показаний приборов и сигнальной информации непосредственно в поле зрения водителя. Используется на некоторых моделях автомобилей и современных боевых самолетах.

IC Inflatable Curtain —надувающаяся занавеска. Разновидность подушки безопасности, применяемая для защиты головы и шеи при ударе сбоку. Предотвращает удар головой о детали интерьера и о неподвижные предметы, с которыми мог столкнуться автомобиль. Одновременно препятствует выпадению пассажиров в окна при аварии.

LED Light Emitting Diod —"светоизлучающий диод". Светодиоды находят все большее применение в приборах внешней световой сигнализации, поскольку обеспечивают большую яркость, а главное — более высокое быстродействие по сравнению с лампами накаливания.

LPG Liquid Petroleum Gas —"сжиженный нефтяной газ". Смесь пропана и бутана, образующаяся как побочный продукт на нефтеперегонных заводах. Имеет высокое октановое число, используется как топливо для ДВС.

MID — Информационная система с мультиинформационным дисплеем.

MPI Multi Point Injection — "многоточечный впрыск". Аббревиатура, используемая для обозначения системы распределенного впрыска бензина, когда для каждого из цилиндров используется отдельная форсунка. В отличие от центрального впрыска, когда используется одна форсунка, "обслуживающая" все цилиндры двигателя. NOх Обобщенная химическая формула оксидов азота. В применении к автомобильному двигателю под N0х чаще всего понимаются токсичные оксиды азота, образующиеся при сгорании топлива в цилиндрах двигателя.

OBD On Board Dyagnostics — бортовая диагностика. Аббревиатура, обозначающая автоматический контроль технического состояния транспортного средства установленными на нем диагностическими системами.

O/D — дополнительная повышенная передача в автоматической коробке передач. АКПП в подавляющем большинстве случаев имеет 4 передачи, причём 3 передача является прямой (имеет передаточное число 1, соответствует 4-ой передаче в механической коробке передач). 4-ая передача АКПП называется овердрайвом (O/D) — она имеет передаточное число меньше единицы (соответствует 5-ой передаче МКПП) и является повышающей. Эта 4-ая скорость экономит топливо, и бережёт двигатель.

Optitron — Оригинальная система подсветки комбинации приборов. При выключенном зажигании комбинация приборов не видна. При включении зажигания сначала «загораются» стрелки приборов, а затем одновременно тахометр, спидометр, указатель уровня топлива и индикатор ручного тормоза. Благодаря темному антибликовому фону приборы с системой Optitron отличаются превосходной читаемостью при любой .

PDC — Сигнализация аварийного сближения при парковке.

RDC — Система контроля за давлением воздуха в шинах при любой скорости движения следит за давлением с помощью датчиков. Уже при незначительном падении давления на приборном щитке загорается сигнальная лампа. При сильном падении давления дополнительно прозвучит предупредительный сигнал.

RDS Radio Data System . Система цифровой передачи данных на частоте вещания радиостанции и приема их автомобильным радиоприемником. Принимаемая информация отображается в буквенно-цифровом виде на дисплее радиоприемника. Таким образом передаются, например, названия , курсы валют, прогноз погоды и т.д.

SAE Society of Automotive Engineers . Американское общество автомобильных инженеров. Широко известна разработанная SAE классификация масел по вязкости.

SIPS Side Impact Protection System . Система защиты от бокового удара. Обозначает комплекс мер, включающий усиление соответствующих элементов кузова (дверных проемов, порогов, стоек, поперечин), размещение защитных и энергопоглощающих элементов в дверях, а также систему боковых подушек безопасности.

SDI Аббревиатура для обозначения атмосферных (безнаддувных) дизелей с непосредственным впрыском топлива.

SRS Supplemental Restaint System — дополнительная система удержания, или надувная подушка безопасности.

STC Stability and Traction Control . Аббревиатура для обозначения противобуксовочной системы.

TCS — Traction Control System — Система управления тягой (антипробуксовочная).

TDI Аббревиатура для обозначения дизелей с непосредственным впрыском и турбонаддувом.

TEMS (Toyota Electronically Modulated Suspension) - электронная система управления подвеской. Благодаря системе TEMS автомобиль Prado легко справляется с любой дорогой. Одно нажатие на кнопку — и система управления подвеской переводит амортизаторы в один из четырех возможных режимов работы: сверхкомфортный, комфортный, полуспортивный или спортивный. Система позволяет подвеске активно реагировать на условия движения: резкие повороты, торможение, езда по бездорожью. Она позволяет водителю лучше чувствовать дорогу при движении по бездорожью. При резком повороте система автоматически настраивает жесткость амортизаторов, противодействуя крену кузова и сохраняя устойчивость автомобиля. Аналогичным образом система уменьшает поперечные крены кузова на бездорожье и “клевки носом” при торможении.

TMC Traffic Message Chamel . Система передачи сообщений о дорожной ситуации на автомобильный радиоприемник.

Torsen Образовано от Torque Sensing — чувствование крутящего момента. Торговая марка фирмы "Gleason". Название червячного самоблокирующего дифференциала. Широкую известность получила благодаря использованию Torsen в качестве межосевых дифференциалов на всех автомобилях Audi Quattro.

TRC (Traction Control) - антипробуксовочная система. При пробуксовке ведущих колес при ускорении система автоматичекси снижает крутящий момент двигателя и подтормаживает сорвавшееся в пробуксовку колесо, способствуя восстановлению тягового усилия. Действуя совместно с системами ABS и EBD, она облегчает и ускорение, и торможение.

Twin Spark — двойная искра. Название, используемое Alfa Romeo для обозначения системы зажигания с двумя свечами на цилиндр.

UIS Unit Injector System . Аббревиатура, обозначающая насос-форсунки.

VANOS обозначает системы изменения фаз газораспределения.

VSC (Vehicle Stability Control) — система курсовой устойчивости. Автоматически срабатывает после того, как улавливает занос из-за резкого поворота руля или недостаточного контакта со скользкой дорогой. Подтормаживая то или иное колесо и изменяя крутящий момент двигателя, она выводит автомобиль из заноса и помогает водителю стабилизировать траекторию движения.

VTEC Variable Valve Timing and Lift Electronic Control — "электронное управление изменяемыми фазой и подъемом клапанов". В зависимости от режима работы двигателя система обеспечивает привод одноименных (например, впускных) клапанов каждого цилиндра от одного общего или двух разных кулачков распределительного вала.

VVT-i (Variable Valve Timing — intelligent) Электронная система изменения фаз газораспределения. Регулирует время открытия впускных клапанов, поддерживает оптимальный момент открытия, за счет чего улучшается наполнение двигателя горючей смесью. В результате улучшаются характеристики двигателя на промежуточных режимах работы.

VVTL-i (Variable Valve Timing and Lift — intelligent) Электронная система изменения фаз газораспределения. Регулирует время открытия впускных клапанов и высоту открытия впускных и выпускных клапанов. Используется в двигателе для спортивной модификации Corolla T-Sport.

WHIPS Whiplash Protection System — система защиты от "плетевого" удара. Название специальной системы, предназначенной для снижения нагрузок на позвоночник и уменьшения вероятности получения травм позвоночника при ударе сзади (попутном столкновении). При такой аварии система обеспечивает передвижение спинки сиденья назад (для снижения нагрузки), после чего спинка откидывается на угол 15° (для предотвращения "эффекта катапультирования").

WIL (Whiplash Injury Lessening) Технология, применяемая в конструкции передних сидений для уменьшения возможности получения травмы от внезапного резкого движения головы при ударе сзади. Верхняя часть сидения поддерживает верх спины водителя или пассажира, а подголовник ограничивает возможность откидывания головы назад. Подобная комбинация позволяет снизить риск травм шеи, вызванный резким движением головы при столкновении на небольшой скорости.

Electronic car control systems

Каждое следующее поколение транспортных средств с течением времени стает все больше компьютеризованным, вытесняя механические системы и постепенно меняя их на электронные. И если еще пару десятков лет назад любой водитель мог собственноручно поменять сгоревшую лампу в фаре, то нынче непрофессиональное вмешательство в работу автоэлектроники, которой в разной степени оборудованы современные версии авто, может повлечь самые серьезные и неотвратимые сбои в ее работе.

Либо же по причине замыкания проводки может произойти возгорание и уничтожение транспортного средства за считанные минуты, что, в принципе, понятно, ведь все новое электронное оборудование состоит из множества связанных узлов. Поэтому каждый владелец, бережно относящийся к своему авто, ремонт электронного оборудования должен доверить только профи, которыми и являются все сотрудники нашего автотехцентра.

Диагностика ЭБУ в автоцентре Митино

Системы электронного оборудования – важная составная начинки современного автомобиля. Они контролируются электронными блоками управления (ЭБУ) и необходимы для регулировки работы почти всех автомобильных систем.

Диагностика ЭБУ, как правило, проводится непосредственно на транспортном средстве. В нее входит диагностика сканером, проверка режимов включения в блоках управления и проверка работы главных функций ЭБУ (управление бензонасосом, главным реле, форсунками впрыска, зажиганием и др.).Дилерские центры не занимаются ремонтом автоэлектроники, поэтому использование диагностического высокотехнологичного оборудования в сочетании с опытом высококвалифицированного персонала автоцентра Митино – залог своевременного выявления поломок и их качественного устранения.

Причины неисправностей и ремонт ЭБУ

Обычно ЭБУ сбиваются с нормального режима работы из-за перенапряжения или негативного внешнего влияния, типа перегрева, вибрации, коррозии, влаги либо механического повреждения электронных блоков управления. Часто от таких негативных факторов страдает АБС (антиблокировочная система тормозов) и коммутационный блок BSI. Например, нам нередко приходится делать ремонт BSI Пежо 307 или работать с автомобилями Опель Вектра, ремонт АБС которых поставил в затруднительное положение мастеров других сервисов.

Здесь необходимо напомнить, что ремонт ЭБУ Опель Астра, Вектра, Корса, автовладелец просто обязан делать с течением времени эксплуатации техсредства. Из-за заводского расположения блока в отсеке двигателя, где он поддается постоянным вибрациям, появляются ошибки в данных управления разнообразными датчиками. Технология ремонта ЭБУ, которая применяется в автотехцентре Митино, полностью устраняет подобные проблемы.

Распространенные неполадки панели приборов и устранение их в автоцентре Митино

Современные варианты приборных панелей на автомобилях оснащены внутри множеством электронных элементов, в которых иногда возникают неисправности. Из наиболее частых, с которыми с легкостью справляются наши мастера, можно выделить мигание либо выключение подсветки панели приборов, неисправную работу спидометра и тахометра при нормально поступающем сигнале.

В автомобилях Skoda, Renault, VW, Opel нередко появляются проблемы с информационным ЖК-дисплеем, требующие немедленного вмешательства специалистов. А ремонт панели приборов Рено Сценик усложняется наличием газоразрядного индикатора панелей, который снять, избежав разгерметизации, может только профи.

Многие автовладельцы при малейшей неисправности панели сразу меняют ее на новую. Однако сервисные возможности автотехцентра Митино сегодня таковы, что ремонт панели приборов – это уже не проблема, а услуга, позволяющая автовладельцу существенно сэкономить.

Определяясь с выбором подходящего сервиса, помните, что наш профессионализм, опыт и уважительное отношение к каждому клиенту, которыми не всегда могут похвастать другие ремонтные компании, – залог самого качественного ремонта Вашего автомобиля.

Современные автомобили в изобилии предлагают водителям разнообразных электронных помощников. В этой статье мы разберем причины появления таких систем, а также их работу.

Именно зимой, на скользкой дороге, и проявляются все преимущества высоких технологий, которые добавляют водителю спокойствия и уверенности. С другой стороны, рассмотрев подробно работу электроники, мы четко поймем ее возможности и перестанем приписывать ей чудесные свойства. Мысль о том, что на дорогом автомобиле все можно, крайне опасна.

Режимы работы АКПП

Автоматические коробки переключения передач имеют, как правило, несколько режимов работы:

  • нормальный;
  • спортивный;
  • зимний.

Все отличие между ними заключается лишь в том, в какой момент и какие передачи включаются. В одной из предыдущих статей мы рассматривали принципы подбора передач. Напомним - передачи подбираются из тех соображений, чтобы двигатель работал в том режиме, который требуется для достижения определенных целей.

Например, спортивный режим подразумевает подбор передач таким образом, чтобы двигатель все время работал на высоких оборотах, выдавая наибольшую мощность. Нормальный режим, наоборот, поддерживает двигатель в зоне умеренных оборотов - экономичном диапазоне. Конечно, когда водитель значительно утапливает педаль газа, электроника воспринимает это, как желание интенсивно ускоряться и включает более низкую передачу, что повышает обороты двигателя, соответственно, и его мощность - функция kick-down. Как только разгон закончен (педаль газа отпущена), автоматика снова включает высокую передачу, а вместе с ней и экономичный режим работы двигателя.

Оптимальный вариант для зимних дорог

Самый актуальный на сегодняшний день, зимний режим, отличается не только тем, что двигатель поддерживается на небольших оборотах, но и тем, что включаются по возможности более высокие передачи. В результате электроника не позволяет получить на колесах максимальный крутящий момент для предотвращения пробуксовки ведущих колес. В таком режиме, конечно, затруднительно взбираться на подъемы или кого-то буксировать, зато не требуется тонкая работа с газом при движении по скользкому покрытию.

Современные антипробуксовочные системы, которые будут рассмотрены ниже, больше не требуют от водителя вмешиваться в работу АКПП, поэтому зимний режим как таковой отсутствует. Электроника самостоятельно регулирует режимы работы двигателя и АКПП для достижения наилучших результатов в любой момент времени.

Последнее достижение технической мысли, которое появилось на современных автомобилях, - бесступенчатые КПП - вариаторы. Здесь вообще нет фиксированных передач - передаточное отношение может меняться плавно, без разрыва потока мощности и практически в бесконечном диапазоне. Конечно, современная электроника может управлять таким устройством с максимальной точностью, что позволяет добиться прекрасных результатов в любых условиях.

Антиблокировочная система тормозов (ABS)

Эта система была разработана самой первой из устройств активной безопасности. Причина ее появления следующая - тормозные механизмы любого автомобиля рассчитаны на большие нагрузки, поэтому при интенсивном торможении может возникнуть такая ситуация, когда тормоза настолько сильно зажмут колеса, что те перестанут вращаться. Автомобиль продолжает двигаться по инерции, а колеса скользят, как лыжи, происходит блокировка колес.

Когда колеса заблокированы, они в значительной мере теряют сцепление с дорогой. И что самое неприятное - они теряют его во всех направлениях. В результате, автомобиль не только начинает хуже тормозить, он вообще начинает хуже держаться за дорогу - его может развернуть или снести в сторону.

Как работает система ABS

На каждом из колес находится специальный датчик, который определяет - вращается колесо или нет. Как только этот датчик дает команду о том, что колесо остановилось, электроника, при помощи специального перепускного клапана, сбавляет давление в соответствующей тормозной магистрали. Это позволяет ослабить тормозное усилие, и колесо снова может вращаться. Теперь тот же датчик отвечает - колесо вращается, электроника снова зажимает тормозные механизмы. Так происходит много раз в секунду.

В результате работы системы ABS в тормозных магистралях возникают импульсы давления, и водитель ощущает значительную вибрацию педали тормоза. Кроме того, раздается характерный треск. Иногда это даже пугает водителя, впервые столкнувшегося с работой ABS - ему кажется, что автомобиль разваливается.

Эффективность работы системы

Иногда мы слышим от водителей недовольство системой ABS - я давлю на тормоз, все трещит, а машина продолжает двигаться вперед, без ABS я бы остановился быстрее. При работе антиблокировочной системы колеса продолжают немного проворачиваться, и водителю кажется, что система не позволяет использовать весь их потенциал по торможению. Это ошибочное ощущение - без ABS водитель бы заблокировал колеса надолго, и тормозной путь был бы намного больше.

Конечно, справедливости ради, нужно сказать о том, что на различных покрытиях максимально эффективное торможение может достигаться по-разному - бывают ситуации, когда даже полная и длительная блокировка колес приводит к отменному результату. ABS выполняет некую усредненную программу, поэтому, например, на гоночной технике таких систем не ставят - там опытный пилот добивается лучших результатов самостоятельно. Тем не менее, в обычной жизни случаи, когда профессионал может своими действиями достичь большего, чем электроника, редки.

И если вы не хотите все время быть в полной концентрации, как раллист на спец.участке, ABS сослужит вам добрую службу.

Только не забывайте о том, что в конечном итоге все зависит от водителя. Старайтесь тормозить на прямой (мы ранее рассматривали силы, действующие на колеса автомобиля), так тормозной путь будет меньше. При срабатывании ABS на автомобилях с механической КПП колеса частично блокируются, и двигатель вынужден работать на предельно малых оборотах - он пытается тянуть автомобиль дальше. Нажав на сцепление, вы отсоедините двигатель от колес и облегчите работу ABS.

Антипробуксовочная система и системы стабилизации

Буксование ведущих колес при разгоне также характеризуется потерей сцепления с дорогой. Длительное буксование не позволяет эффективно разгоняться на прямой и приводит к сносу ведущих колес при движении по дуге - переднеприводные автомобили соскальзывают с дороги передними колесами, заднеприводные - задними. Со всеми этими неприятностями справляется антипробуксовочная система.

При поступлении сигнала о том, что какое-либо из колес начало вращаться намного быстрее, чем его коллеги - электроника ограничивает подачу топлива в двигатель, как будто водитель сбавил газ. При этом ничего не трещит и не вибрирует - автомобиль просто вяло реагирует на газ. В связи с тем, что система воздействует не на колеса, а на двигатель, наблюдается определенная инерционность и «тупость» в реакциях автомобиля.

Поэтому, для тех, кто умеет и готов действовать самостоятельно, предусмотрено отключение данной системы - при грамотной работе водитель может добиться лучших результатов и получить при этом море удовольствия от активной езды. Если же вы не хотите пребывать в состоянии ковбоя, сидящего на необъезженном скакуне, включайте систему и расслабьтесь - состояние плавания на барже вам гарантировано.

Дальнейшее слияние и совершенствование антиблокировочной и антипробуксовочной систем привело к появлению систем стабилизации. Такая система комплексно воздействует и на тормоза, и на двигатель. Она не только выполняет описанные выше функции, но и выборочным подтормаживанием отдельных колес, вызывает появление сил, которые противодействуют возникновению заносов. Те же функции используются и для повышения проходимости - специальное подтормаживание не позволяет одному из колес буксовать в то время, как другие бездействуют.

Что нас ждет в будущем

Развитие подобных систем продолжается и двигается в 2-х основных направлениях. Первое - увеличение и совершенствование датчиков, т.е. чем больше и точнее поступает информация о состоянии автомобиля и окружающей среды, тем более полные выводы можно из этого сделать. Современные автомобили буквально напичканы разными датчиками.

Причем, если раньше эти датчики анализировали только состояние самого автомобиля, то теперь они начинают осмыслять то, что происходит вокруг.

Второе направление - совершенствование контроля над отдельными частями автомобиля. Здесь, как это ни печально, оказалось, что самое ненадежное звено в автомобиле - это прокладка между рулем и сидением, т.е. мы с вами, - водители. Поэтому автомобильные инженеры изо всех сил стараются отобрать у водителя возможность делать «что ему вздумается».

  • На многих автомобилях уже нет механической связи между педалью газа и дроссельной заслонкой, да и дроссельной заслонки, собственно, уже нет. Есть только датчик, который фиксирует ваши действия - степень нажатия на педаль газа, и компьютер, который думает, согласиться с вами или нет.
  • На подходе рулевое управление, в котором вы не будете поворачивать колеса, а будете просить компьютер повернуть колеса в нужном направлении.
  • То же и с тормозами, причем датчики сближения и ждать не будут, пока вы соизволите надавить на педаль тормоза. Mercedes ведет активные эксперименты по управлению автомобиля при помощи одного единственного джойстика… Все это одним словом называется «управление по проводам».
  • А уж когда удастся на каждое из колес поставить свой электродвигатель-тормоз, тогда с автомобилем можно будет сделать вообще все, что вздумается. Но вздумается не вам, а компьютеру.

Добавим спутниковое слежение и информационную связь с дорогой - и вы смело можете садиться не на переднее сидение, а ложиться в багажник.

Послесловие

Пока еще это «светлое» будущее не наступило, водителю все же требуется вспоминать о законах физики. А они просты - никакая электроника не уменьшает массу автомобиля и не убирает лед из-под колес. Современная электроника - это лишь помощники на случай небольших погрешностей водителя.

Очень хорошо сделал Mercedes - когда срабатывает система ESP, на панели загорается треугольник с восклицательным знаком. Не зелененькая голова с улыбкой (мол, все оk), а желтый треугольник с восклицательным знаком - поаккуратнее мол там, ты уже ошибся, ошибаться осталось недолго!

Грамотное и вдумчивое вождение автомобиля, которое подстраховывает современная электроника - это истинное наслаждение за рулем и возможность реализовать весь потенциал автомобиля. Неграмотное и халатное вождение автомобиля, с которым пытается бороться современная электроника - это езда на грани фола, до первой серьезной ошибки, когда уже ничто не поможет.

В конструкциях автомобилей все более широкое применение находят электронные системы управления. По прогнозам специалистов в ближайшее десятилетие только 15…18 % изменений конструкции автомобилей будет отдано механике, основные изменения будут касаться электронных систем управления автомобилем.

При упрощенном рассмотрении электронной системы управления автомобилем можно выделить четыре основных блока (рис. 1): входные сигналы - датчики, системы передач данных, электронный (электронные) блок (блоки) управления (ЭБУ), исполнительные механизмы (ИМ).

Рис. 1.

Электронный блок управления является самым сложным прибором систем управления двигателем или отдельных систем автомобиля и координирует их работу. Основу блока составляет центральный процессор или микрокомпьютер.

ЭБУ получает электрические сигналы от датчиков или генераторов в ожидаемом интервале значений, оценивает их, затем проводит вычисление пусковых сигналов для исполнительных устройств (приводов).

Входные сигналы могут быть цифровыми, аналоговыми и импульсными (рис. 2).


Рис. 2.

Цифровые входные сигналы - это входные сигналы, которые имеют только два состояния: «высокий уровень» и «низкий уровень». Примеры цифровых входных сигналов: сигналы включения/ выключения, сигналы цифровых датчиков (например, импульсы от датчика Холла). Такие сигналы обрабатываются непосредственно микропроцессором.

Аналоговые входные сигналы в пределах заданного диапазона принимают значения напряжения. Физические величины, которые Н - высокий уровень сигнала; L - низкий уровень сигнала; FEPROM - программируемая память (постоянное запоминающие устройство, ПЗУ); EEPROM - постоянная память (ПМ); RAM - оперативная память (ОП); A/D - аналогово-цифровой преобразователь (АЦП); CAN - электронная цифровая шина данных рассматриваются как аналоги измеренных значений напряжения: массовый расход воздуха на впуске, напряжение аккумуляторной батареи, давление во впускном коллекторе и давление наддува, температура охлаждающей жидкости и воздуха на впуске. Аналогово-цифровой преобразователь (АЦП) преобразует эти значения в цифровые сигналы, с которыми затем микропроцессор проводит расчеты.

Разновидностью аналоговых сигналов являются быстро изменяющиеся сигналы напряжения, называемые импульсными входными сигналами . Импульсные входные сигналы от индуктивных датчиков, содержащие информацию о частоте вращения и положении вала (по метке), обрабатываются в их собственном контуре в ЭБУ. Здесь ложные импульсы подавляются, импульсные сигналы преобразуются в цифровые прямоугольные сигналы.

Для работы микропроцессору требуется программа, которая хранится в программируемой (перезаписываемой ) памяти (постоянное запоминающие устройство - ПЗУ, или FEPROM). Эта память предназначена только для считывания информации. Она также содержит специальные фиксированные данные (индивидуальные данные, характеристические и программируемые матрицы, значения поправочных коэффициентов и данные, необходимые процессору для расчетов длительности управляющих импульсов форсунок, угла опережения зажигания и т.п.), которые не могут быть изменены во время управления автомобилем. Перезаписывающая память является энергонезависимой, т.е. вся занесенная в нее информация сохраняется при отключении энергопитания сколь угодно долго.

Оперативная память (RAM) служит для хранения таких изменяющихся данных, как численные значения сигналов. Для правильной работы ОП требуется постоянное электрическое питание. При отключении зажигания или выключателя пуска ЭБУ выключается и, следовательно, теряется вся память (так называемая испаряющаяся память). Адаптирующие значения величин, т.е. те, которые «обучаются» системой во время работы и касаются работы двигателя рабочих режимов, должны быть восстановлены при включении ЭБУ в работу.

Данные, которые нельзя терять (например, коды иммобилайзера и данные кодов неисправности), должны храниться в устройстве EEPROM (ПМ) - данные в ПМ не теряются даже в случае отсоединения аккумуляторной батареи.

Блок текущего контроля ЭБУ оснащается следящим контуром, который встроен в специализированную интегральную схему, которая оснащается повышенной оперативной памятью (extra RAM), усовершенствованными входными и выходными блоками и может генерировать и передавать сигналы широтно-импульсной модуляции. Микропроцессор и блок текущего контроля следят друг за другом и, как только обнаруживается неисправность, любой из них может выключить подачу топлива независимо от другого.

Используя выходные сигналы , микропроцессор запускает задающие каскады. Выходные сигналы обычно являются достаточно мощными, чтобы непосредственно управлять исполнительными устройствами или реле. Задающие каскады защищены от короткого замыкания на массу или аккумуляторную батарею и разрушения при электрической перегрузке. Такие нарушения в работе вместе с обрывами цепи или неисправностями датчиков определяются контроллером задающих каскадов, затем эта информация передается в микропроцессор. Выходные сигналы могут быть переключающими и сигналами широтно-импульсной модуляции.

Переключающие сигналы используются для включения и выключения исполнительных устройств (например, электровентилятора системы охлаждения двигателя). Сигналы широтно импульсной модуляции (PWM signals ) - это прямоугольные сигналы с постоянным периодом, но переменные по времени (рис. 3). Они могут быть использованы для пуска электромагнитных приводов (например, клапана системы рециркуляции ОГ - отработавших газов).

Встроенная диагностика . Одной из важных функций блока управления является непрерывная самодиагностика не только входных и выходных цепей компонентов, но и некоторых показателей внутреннего состояния системы. В современных ЭБУ осуществление самодиагностики занимает до 50 % ресурсов микрокомпьютера. В случае нахождения неисправностей в какой-либо цепи (например, отсутствие или несоответствие заданному уровню сигнала одного из датчиков) микропроцессор записывает соответствующий данной неисправности цифровой код в специальную область памяти, а для того чтобы получить информацию о характере неисправности, необходимо осуществить считывание кода из памяти компьютера.

Рис. 3. а - постоянный период; b - длительность сигнала

ЭБУ постоянно контролирует исправность всех его компонентов, но ошибка помимо своего информационного значения несет флаг статуса, т.е. ошибки могут быть статические (текущие) и случайные (спорадические, накопленные).

Каждый раз при включении зажигания ЭБУ начинает анализировать работу своих датчиков и исполнительных устройств. Такой анализ длится все время, пока работает двигатель. При обнаружении дефекта ЭБУ фиксирует неисправность, выставляет код ошибки и использует аварийную ветвь программы управления. В случае если какой-либо входной сигнал отсутствует или заведомо неправильный, блок управления рассчитывает и использует вместо него некоторое теоретическое значение, что позволяет ему продолжать дальнейшее управление двигателем. Например, при выходе из строя датчика давления во впускном коллекторе для определения времени впрыска используется значение, рассчитанное исходя из частоты вращения коленчатого вала и положения дроссельной заслонки.

После выключения зажигания блок управления сохраняет код в ОЗУ.

2. Системы передачи данных

Современное автомобилестроение интенсивно внедряет инновационные технологии в системах управления. Общая тенденция в области автоматизации автомобилей состоит в замене традиционной централизованной системы управления распределенной системой управления путем соединения блоков управления интеллектуальных датчиков и исполнительных механизмов. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностирования автомобилей и снижением надежности. Увеличивающееся применение электронных систем управления автомобилей с обратной и без обратной связи требует, чтобы индивидуальные ЭБУ работали в сети друг с другом. Такие системы управления включают:

  • управление коробкой передач;
  • электронное управление двигателем или регулирование подачи топлива;
  • антиблокировочную систему тормозов (ABS);
  • противобуксовочную электронную систему (TCS);
  • электронную систему курсовой устойчивости (ESP);
  • систему управления тормозным моментом (MSR);
  • электронный иммобилайзер (EWS);
  • бортовой компьютер и т.д.

Обмен информацией между системами уменьшает общее количество необходимых датчиков и улучшает управление отдельными системами. Интерфейсы систем передачи информации, проектируемые для применения в автомобилях, могут быть подразделены на четыре категории:

  1. обычная передача данных;
  2. последовательная цифровая передача данных, т.е. сеть контроллеров (CAN);
  3. широкополосные шины передачи данных с временным разделением каналов (шина FlexRay);
  4. оптическая передача данных (шина типа МОSТ).

Обычная передача данных в автомобиле (рис. 4) характеризуется тем, что каждый сигнал имеет свой собственный канал связи (провод). При этом с каждой дополнительной информацией возрастает также число проводов и количество контактов на блоке управления, поэтому подобный тип передачи информации оправдывает себя только в случае ограниченного объема передаваемых данных.

Рис. 4.

Увеличение обмена данными между электрическими компонентами автомобиля уже достигли таких объемов, что дальнейшие попытки управления через обычные интерфейсы уже не удовлетворяют современные системы управления, поэтому стали применяться шины передачи данных.

В связи с возросшими требованиями передачи информации в автомобильных системах управления, вместо обычной электропроводки в современных автомобилях используется последовательная цифровая передача данных . Все более широкое распространение находят электронные цифровые шины данных CAN (Controller Area Network). Цифровая передача данных значительно надежнее обычной аналоговой, так как шина лучше защищена от помех, контакты надежно изолированы от внешних воздействий.

Шина данных CAN является открытой системой, к которой могут быть подключены как медные провода, так и стекловолоконные проводники. CAN-шина облегчает диагностику и ремонт вышедших из строя компонентов системы управления автомобилем. Универсальная проводка подходит и для разных комплектаций одного автомобиля - дополнительные устройства просто подключаются к нужным разъемам.

В зависимости от приоритетов и требований к скорости передачи данных шина CAN может быть одноили двухпроводной.

Если для работы систем достаточно низкой скорости передачи данных, то используются шины с одним проводом связи, если скорость передачи должна быть высокой - шины с двумя проводами связи. Второй провод используется для проверки правильности переданной модулем управления информации и для самоконтроля модуля. Данные передаются по обоим проводам одновременно. Сигнал на первом проводе представляет собой перевернутое повторение сигнала, передаваемого по второму проводу.

Все связанные через шину CAN блоки управления подключаются к ней параллельно. Один из проводов шины CAN называется верхним - CAN H (High), другой - нижним - CAN L (Low). Два невзаимозаменяемых скрученных провода (рис. 5) образуют пару (Twisted Pair).

Рис. 5.

Скручивание проводов производится для того, чтобы ослабить помехи электромагнитного характера, а также излучающие помехи. Скручивание позволяет также устранить излучение шины, способное создать помехи в работе других устройств.

По проводу CAN H информация передается в виде электрических сигналов напряжением от 2,5 до 3,5 В, а по проводу CAN L - от 1,5 до 2,5 В (рис. 6). Разность напряжений, равная нулю, дает уровень логического нуля, а разность напряжений 2,0 В - уровень логической единицы.

Рис. 6.а - напряжение; б - разность напряжений; А, С - логический уровень равен 0; B - логический уровень равен 1

CAN - мультимастерная шина, т.е. без центрального управляющего устройства. Все подключаемые к центральному или центральным блокам электронные блоки разных систем (или контроллеры) равноправны - любой имеет доступ к передаваемым данным и может сам их передавать.

CAN-шина относится к типу последовательных; передача данных в шине выполняется по протоколу в виде обмена сообщениями между блоками управления через очень короткие промежутки времени. Протокол состоит из последовательности бит* информации, передающихся друг за другом. Число бит в протоколе передачи данных зависит от размера поля данных.

* Бит - базовая единица измерения количества информации, равная количеству информации, содержащемуся в опыте, имеющем два равно вероятных исхода (да или нет).

Данные передаются бит за битом и в такой же последовательности принимаются. Биты составляют отдельные поля (рис. 7), из них складываются так называемые кадры - основные информационные единицы.

Начало кадра обозначает начало протокола передачи данных.

Арбитражное поле используется для обозначения приоритета протокола передачи данных. Например, если двум блокам управления требуется отправить сообщения одновременно, то первым отправляет сообщение в блок управления с более высоким приоритетом. Кроме того, арбитражное поле используется для определения содержания сообщения (например, частоты вращения коленчатого вала двигателя).

Рис. 7.1 - начало кадра (1 бит); 2 - арбитражное поле (11 бит); 3 - неиспользуемое (запасное) поле (1 бит); 4 - поле управления (6 бит); 5 - поле данных (64 бита); 6 - поле обнаружения ошибок CRC (16 бит); 7 - поле сигнала приемника передатчику ACK (2 бита); 8 - конец кадра (7 бит)

В поле управления (контрольное поле ) в виде кода записывается количество элементов информации в поле данных. Этим обеспечивается возможность для каждого приемника проверить, были ли получены все необходимые данные.

В поле данных передаются элементы данных, являющиеся важными для других блоков управления. Оно содержит больше всего информации: от 0 до 64 бит (от 0 до 8 байт).

Поле CRC используется для обнаружения ошибок в процессе передачи данных.

Поле ACK содержит сигнал приемника передатчику о том, что протокол данных был успешно выполнен. В случае обнаружения ошибки информация об этом немедленно поступает в передатчик и отправка сообщения повторяется.

Конец кадра предназначен для проверки передатчиком протокола данных и отправки приемнику подтверждения о его безошибочном выполнении. В случае обнаружения ошибки передача данных немедленно прекращается, а затем выполняется повторно. После этого протокол передачи данных считается выполненным.

Один кадр может включать несколько параметров, например, кадр, выдаваемый ЭБУ системы впрыска топлива, может состоять из следующих параметров:

  • частота вращения коленчатого вала двигателя;
  • средний эффективный крутящий момент двигателя;
  • заданная водителем скорость движения;
  • состояние системы круиз-контроля (включена или не включена);
  • разрешение на включение компрессора кондиционера;
  • величина крутящего момента двигателя без учета воздействия автоматической коробки передач.

Рис. 8. 1 - идентификационный код послания (11 бит); 2 - содержание послания (до 8 × 8 бит); 3 - контрольная сумма (16 бит); 4 - подтверждение приема послания (2 бит)

Некоторые кадры выдаются периодически (например, кадр системы впрыска топлива - через каждые 10 с), другие - при наступлении какого-либо события (например, кадр, генерируемый ЭБУ подушек безопасности, выдается в случае удара, при этом выключается топливный насос, происходит разблокировка замков дверей и запрещается блокировка рулевой колонки).

Обмениваемая информация состоит из отдельных посланий, которые могут быть отправлены и получены каждым из блоков управления. Каждое из посланий (рис. 8), составленное согласно протоколу, содержит данные о каком-либо физическом параметре, например, о частоте вращения коленчатого вала.

Примером идентификационного кода послания может быть: двигатель, частота вращения коленчатого вала двигателя. В этом же послании могут содержаться и другие данные (например, указания о холостом ходе, передаче крутящего момента и других режимах работы двигателя). При этом величина частоты вращения представляется в двоичной форме, т.е. как последовательность нулей и единиц или бит (рис. 9). Например, значение частоты вращения двигателя 1800 об/мин может быть представлено как двоичное число 00010101.

Рис. 9.

Пример упрощенной передачи данных на примере угла положения дроссельной заслонки, который показывает, как строится информация, дан в табл. 1. Положение дроссельной заслонки от 0° до 102° передается с шагом 0,4° 8 битами, таким образом возможно 256 вариантов комбинаций битов.

Таблица 1. Зависимость изменения данных в шине от положения (угла) дроссельной заслонки

В современных автомобилях, как правило, применяются три вида шин, работающие с разными скоростями (рис. 10). Наиболее важные устройства и системы (антиблокировочная система тормозов, система курсовой устойчивости и др.) подключаются к скоростной магистрали с пропускной способностью 500…1000 Кб/с, практически обеспечивающей работу системы в реальном времени. Менее быстрые и важные приборы - система «Комфорт» или информационно-командная система (радио, монитор на центральной консоли, система навигации и кондиционирования) - завязаны на вторую шину со скоростью 95,2…100,0 Кб/с. Для остальных «медленных» устройств - система «Комфорт» (дверных замков, систем освещения, стеклоподъемников) - служит третья шина со скоростью 33,3…100,0 Кб/с.

Рис. 10.(на примере автомобиля Polo модели 2002 г.): 1 - шина наиболее важных устройств; 2 - шина информационно-командной системы; 3 - шина системы комфорта; БУ - блок управления; ЗУ - запоминающее устройство

Вместо ключа зажигания в автомобилях, оборудованных CAN-шинами, используют электронный брелок, который взаимодействует с блоком управления двигателем через цифровую шину. Возросшие требования к скорости передачи и безопасности данных требуют применения широкополосных шин передачи данных с временным разделением (временным управлением) каналов (для сравнения: CAN представляет собой событийно-управляемую шину данных).

Шина FlexRay - это последовательная, детерминистическая и устойчивая к сбоям шина передачи данных для применения в автомобиле; скорость передачи данных составляет 10 Мб/с, что в 20 раз превышает скорость передачи по высокоскоростной шине CAN (500 Кб/с).

Важной особенностью FlexRay является также гарантированное время реакции или латентный период реагирования, т.е. время, которое требуется на прохождение сообщения от отправителя до получателя. В связи с этим говорят также о детерминистической (предопределенной, регламентированной) передаче. Это означает, что данные поступают к адресату или адресатам в строго определенный или предварительно заданный момент времени (возможно применение в режиме реального времени).

Шина FlexRay двухпроводная: плюсовой провод обозначают красным цветом, минусовой - синим. Уровень напряжения на обоих проводах колеблется (рис. 11) от минимума (2,2 В) до максимума (2,8 В) (для сравнения в высокоскоростной шине CAN 1,5…3,0 В). Уровень разностного напряжения составляет не менее 600 мВ (в высокоскоростной шине CAN 2 В).

Рис. 11.

FlexRay работает с тремя состояниями сигнала:

  • холостой сигнал - уровень напряжения обоих проводов шины составляет 2,5 В (режим холостого хода). Рецессивный сигнал означает, что уровень напряжения может быть превышен (перезаписан) другим блоком управления;
  • 1 - плюсовой провод имеет высокий, а минусовой - низкий доминирующий уровень напряжения;
  • 0 - плюсовой провод имеет низкий, а минусовой - высокий доминирующий уровень напряжения.

Доминирующий сигнал означает, что этот уровень напряжения не может быть превышен (перезаписан) другими блоками управления.

При таких параметрах уровня напряжения время передачи 1 бит составляет 100 нс (наносекунд) (для сравнения в высокоскоростной шине 2000 нс).

Центральный блок информационно-командной системы может соединяться с процессором навигационной и других систем посредством оптического кабеля - шины типа МОSТ (Media Oriented Systems Transport). Это необходимо для защиты линии передачи данных от помех. Для передачи данных через оптический кабель следует преобразовать аналоговую информацию в серии световых импульсов, которые затем могут распространяться по стеклянным волокнам кабеля. Длина световых волн меньше длины радиоволны, поэтому они не создают электромагнитных помех и сами являются невосприимчивыми к таковым.

Вокруг любого проводника, по которому проходит электрический ток (рис. 12), возникают поля, поэтому проложенные параллельно или перекрещивающиеся проводники тока создают взаимные помехи. Помехи создаются также электромагнитными волнами, генерируемыми, например, мобильным телефоном. При использовании волоконно-оптической связи такие помехи отсутствуют.

Рис. 12. Передача тока по волоконно-оптическому (а) и металлическому (б) проводникам: 1 - цифровая информация; 2 - оптический кабель; 3 - аналоговая или цифровая информация; 4 - металлический проводник; 5 - электромагнитное поле проводника

Преимуществом современных волокно-оптических систем, кроме отсутствия помех, является также скорость передачи данных, достигающая 21,2 Мб/с, что позволяет передавать информацию в виде цифрового сигнала. Такая связь применяется при приеме аудио- и видеопередач, что требует скорости передачи данных порядка 6 Мб/с и больше, в то время как шина CAN при большом количестве жил в жгуте проводов может передавать данные со скоростью не более 1 Мб/с.

Светодиод - один из основных компонентов волокно-оптической системы (рис. 13) предназначен для преобразования сигнала по напряжению в световой сигнал. Длина волны выработанных световых сигналов около 650 нм и их видно как красный свет. Световод предназначен для отправки световых волн, вырабатываемых в передатчике одного блока управления, на приемник другого блока управления. Фотодиод предназначен для преобразования световых волн в сигналы по напряжению.

Рис. 13.1 - световод; 2 - фотодиод; 3 - светодиод; 4 - трансивер

Недостатком волокно-оптической системы является требование плавных изгибов; радиус изгиба световода не должен превышать 25 мм.

Шина типа MOST представляет шину последовательной передачи данных (аудио- и видеосигналов, голосовых сигналов) по оптическому кабелю (рис. 14). С точки зрения физического исполнения в случае шины MOST речь идет о кольцевой структуре (топологии) сети. Шина типа MOST может включать до 64 устройств.

Рис. 14. Шина типа MOST (на примере Touareg 2011 Volkswagen): 1 - ЭБУ в комбинации приборов; 2 - диагностический интерфейс шин данных; 3 - ЭБУ информационной электронной системы; 4 - ТВ-тюнер; 5 - DVD-чейнджер; 6 - головное устройство аудиосистемы; 7 - ЭБУ цифровой аудиосистемы



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»