Тенденции двигателестроения. пойти своим путем. Перспективы. Новые технологии в двигателях внутреннего сгорания Самый технологичный двигатель

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Двигатели - механизмы, приводящие в движение транспорт или машину. Двигатели работают на топливе (например, двигатели внутреннего сгорания), на ядерной энергии (РИТЭГ), на электричестве (двигатели электромобилей), на водороде, на газу, на дизельном топливе и на многом другом. Тип топлива двигателя определяет его экологичность и другие качества. Двигатели прошли довольно длинную историю, но она еще далеко не окончена. Ученые и инженеры постоянно думают над новым топливом и новыми двигателями, стремясь уместить больше энергии в меньшее количество расходов.

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в - он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

В конце 2018 года, в ходе очередной переписки в твиттере, основатель SpaceX упомянул российский ракетный двигатель РД-180. Он признал его конструкцию «блестящей» и намекнул, что компаниям Boeing и Lockheed должно быть стыдно за его использование в ракете Atlas. Он пообещал, что его двигатель Raptor опередит российскую разработку, и сдержал слово - стало известно, что ракетный двигатель для космического корабля Starship опередил РД-180 по уровню давления в камере сгорания.

В то время как все те же основные принципы, которые приводили в движение первые автомобильные двигатели, всё ещё используются и сегодня, современные моторы сильно эволюционировали, чтобы соответствовать требованиям мощности, экологичности и эффективности для выполнения потребностей современных водителей и, конечно же, законодательных рамок.

Подумайте о старых двигателях, как о волках и о современных, как о собаках. Оба вида животных имеют одно и то же наследие и схожие характеристики, но второй вид отлично выполняет свои функции в современных ситуациях, в то время как первые просто не смогли приспособиться к жизни в городе или пригороде; первые выполняют одну задачу: охотиться, чтобы выжить, вторые выполняют целый ряд задач и имеют свои подвиды для выполнения конкретных функций, как то: охота, охрана, участие в выставках и другие. Также и двигатели: от более ранних их версий требовалось всего немного - просто приводить в движение авто, чтобы то двигалось хотя бы не медленнее лошади, в то время как от современного двигателя требуется гораздо больше: быть тихим, и в то же время иметь достаточную мощь , чтобы соответствовать современным критериям, а, может быть, даже быть предметом гордости за свой автомобиль для его владельца.

Прежде чем мы поговорим о том, чем современные автомобильные двигатели отличаются от старых, необходимо понять автомобиля. В любом случае принцип один: смесь бензина и воздуха воспламеняется в камере под названием цилиндр . В цилиндре поршень, который получает давление из-за взрыва, перемещается вниз, а затем снова вверх по инерции и под действием другого поршня, который находится в прямо противоположном расположении относительно первого. Поршень прикреплён к коленчатому валу. Когда поршень перемещается вверх и вниз, это заставляет коленвал вращаться. Коленчатый вал затем выходит на коробку передач, которой и передаёт это вращение, и далее коробка передаёт ходовой части, апогей которой - колёса машины. Звучит просто, не так ли? С современными двигателями всё абсолютно также, но есть огромная куча нюансов.

Между тем, современный бензиновый двигатель ещё очень далёк от идеала эффективности - только представьте, из всей имеющейся химической энергии в бензине только около 15 её процентов преобразуется в механическую энергию, которая в конечном счёте движет автомобилем. Статистика говорит о том, что ещё более 17 процентов энергии теряется вхолостую и колоссальные 62 процента теряется в двигателе за счёт тепла и трения.

На фото слева: старый двигатель Saab; на фото справа: современный двигатель Mini Cooper

Современные двигатели имеют ряд технологий, чтобы сделать их более эффективными в работе. Например, технология непосредственного впрыска, которая смешивает топливо и воздух, прежде чем они будут перемещены в цилиндр, может улучшить эффективность работы двигателя на 12 процентов, потому что топливо сгорает более эффективно. Турбокомпрессоры и турбонаддув , которые используют сжатый воздух от выхлопной системы авто, делают эффективнее цикл сгорания. Сжатый воздух приводит к более эффективному сгоранию. Технология газораспределения и деактивации цилиндров являются такими новшествами, которые позволяют двигателю использовать только такое количество топлива, которое необходимо двигателю, аналогично повышая его эффективность.


Но одно из основных различий между современными автомобильными двигателями и "пожилыми" моторами заключается в том, что современные двигатели работают как бы в режиме "standby", в минимальном режиме, когда им не нужно разгонять машину. В старом 8-цилиндровом двигателе все восемь цилиндров работали независимо от того, находится автомобиль на холостом ходу или получает ускорение от педали акселератора так быстро, как мог бы. Кроме того, все восемь цилиндров получали такое же количество топлива в любой промежуток времени.

Сегодняшние двигатели имеют технологию, которая позволяет им работать умнее. Деактивация цилиндров - это система, которая позволяет некоторым цилиндрам в двигателе выключиться, когда они не нужны, например, когда автомобиль работает на холостом ходу или движется накатом, а педаль акселератора не нажата нисколько. Но когда необходима вся мощь мотора, то эти выключенные ранее цилиндры "просыпаются" и помогают остальным. Деактивация цилиндров помогает двигателям работать более эффективно, так как это означает, что двигатель использует только то топливо, которое необходимо, и прилагает только те усилия, которые необходимы для того, чтобы двигатель не заглох и чтобы производилось достаточно энергии для работы электроники, климат-контроля и прочих дополнительных функций машины.

Технология газораспределения, в свою очередь, помогает современным двигателям работать "умнее". Без этой системы клапаны открываются для того же количества топлива в течение одинакового количества времени и с таким же зазором в любое время, как бы ни старался работать двигатель. Это порождает большие отходы топлива. С переменной газораспределения отверстия клапанов оптимизированы для типа работы, который двигатель делает. Это помогает мотору потреблять меньше топлива и работать намного эффективнее.

Современные двигатели имеют много технологий, которые помогают использовать меньше топлива, производя больше энергии, чем старые двигатели, но у них есть ещё одна вещь, которой пренебрегли "пожилые" двигатели - это партнеры.

Сегодняшние автомобильные двигатели - это не только сложные технологические достижения, но это целая цепочка узлов и агрегатов, работающих слаженно всеми компонентами таких высокотехнологичных достижений, которые помогают им лучше выполнять свою работу. Так, раньше двух-трёх передач в коробке было вполне достаточно, сегодня четырёх- и даже пятиступенчатые КПП уже устаревают - современные двигатели оснащаются современными коробками передач с семью и даже восемью скоростями . Чем больше число передач, тем лучше двигатель работает сразу в двух направлениях: во-первых, в более широком диапазоне скоростей можно достичь более разнообразных оборотов двигателя, а, значит, ускориться медленно или быстро в зависимости от желаемых потребностей; во-вторых, экономить топливо более эффективно за счёт тех же оборотов. Но даже если восьми передач в коробке не хватает, современные двигатели могут иметь "партнерские отношения" и вовсе с бесступенчатой ​​трансмиссией (вариатором). В принцип работы вариаторов заложено бесконечное число передаточных чисел, что делает их в состоянии передать мощность двигателя на колёса наиболее эффективным способом в любом диапазоне скорости автомобиля.

В современные двигатели получают помощь от электродвигателей, работающих на аккумуляторных батареях. В то время как электродвигатель может питать автомобиль на медленных скоростях или вовсе только питать электрооборудование в машине, когда автомобиль останавливается, он также может генерировать дополнительную мощность, когда это необходимо, например, когда автомобиль ускоряется недостаточно быстро.

Но главный партнёр, что позволил значительно повысить эффективность двигателя - это, конечно же, бортовой компьютер , "мозги" автомобиля, который управляет и переключением коробки (кроме механической коробки передач), и обогащённостью и количеством впрыскиваемой в цилиндры топливо-воздушной смеси, и ещё огромным рядом функций.

Дизель с четырьмя турбинами, первый в мире мотор с электрическим нагнетателем и революционный агрегат, способный вдохнуть в ДВС новую жизнь: «Мотор» представляет обзор силовых установок с самыми нестандартными решениями, показанными за последние несколько месяцев.

С начала 2016 года нам показали впечатляющие своей конструкцией дизели для флагманской модели BMW и «заряженной» версии Audi Q7, малолитражный, но очень «умный» бензиновый мотор Volkswagen, «восьмерку» для новой «Панамеры» и необычный продукт совместной работы Koenigsegg и китайцев из фирмы Qoros.

Что общего у «семерки» BMW и суперкара Bugatti Veyron? Количество турбин в моторе! Этой весной баварский флагман получил новый дизельный агрегат: три литра рабочего объема, шесть цилиндров и четыре нагнетателя. Четыре! Это не только первый в истории серийный двигатель «на тяжелом топливе» с таким количеством турбин, но и мощнейшая дизельная «шестерка» в мире.

Двигатель развивает 400 лошадиных сил 760 Нм крутящего момента - на 19 сил и 20 Нм больше прежнего агрегата с тремя компрессорами. Мотор, работающий в паре с восьмиступенчатым «автоматом», позволяет «семерке» ускоряться с места до ста километров в час за 4,6 секунды (длиннобазный седан проделывает то же самое упражнение за 4,7 секунды) - на 0,3 секунды быстрее предшественника. Но наверняка в конструкцию этого мотора заложен куда больший потенциал.

Система многоступенчатого наддува этого мотора состоит из двух малоинерционных нагнетателей высокого давления, установленных в едином блоке, а также двух компактных компрессоров низкого давления. Все турбины включаются в работу последовательно, причем второй компрессор высокого давления задействуется только при резком ускорении и только на оборотах коленвала выше 2500 в минуту.

Новый агрегат получился чуть легче и тяговитее: первые 450 Нм крутящего момента доступны уже с 1000 оборотов в минуту, а на полку в 760 Нм мотор выходит в диапазоне от 2000 до 3000 оборотов в минуту.

Дополнительная турбина низкого давления позволила не только увеличить отдачу мотора, но и повысить топливную экономию на 11 процентов - до 5,7-5,9 литра на сто километров пробега.

Концерн Volkswagen на симпозиуме в Вене представил новую 1,5-литровую «турбочетверку», которая заменит нынешний наддувный агрегат объемом 1,4 литра. Главное новшество этого двигателя - турбина с изменяемой геометрией крыльчатки, которая впервые в мире появится на массовых моделях с ДВС с искровым зажиганием.

Компрессоры с изменяемой геометрией компании Peugeot, Citroen, Honda и Chrysler применяли еще в конце 1980-х годов, однако сейчас эта технология используется только на спорт- и суперкарах, вроде Porsche 911 Turbo, а также на новых турбированных «четверках» моделей 718 Cayman и 718 Boxster. Ну и в дизельных агрегатах, конечно же.

Особенность такого турбонагнетателя - кольцо со специальными направляющими лепестками, которые способны менять свой угол для оптимизации мощности турбины при конкретных нагрузках. Возможность изменения сечения увеличивает отдачу, улучшает отклик мотора и снижает уровень потребления топлива. Максимальный крутящий момент достигается при меньших оборотах и доступен в более широком диапазоне по сравнению с моторами с традиционным нагнетателем.

Одной из первых моделей, получивших двигатель с турбиной с изменяемой геометрией крыльчатки, стал мелкосериный хэтчбек Shelby CSX–VNT 1989 года

Новый 1,5-литровый агрегат будет предлагаться в двух вариантах мощности: 131 и 150 лошадиных сил. Пиковый крутящий момент базового мотора в 200 Нм достигается уже при 1300 оборотах в минуту и доступен вплоть до 4500 оборотов.

Еще одно новшество - этот мотор будет работать по циклу Миллера , в котором впускной клапан остается открытым еще на какое-то время в начале цикла сжатия и закрывается чуть позже, чем на стандартных двигателях. В результате геометрическая степень сжатия увеличилась с 10,5:1 у прежнего двигателя до 12,5:1.

Помимо этого, новая «четверка» получила систему деактивации цилиндров, которая отключает два из них при малых нагрузках, усовершенствованную систему впрыска топлива с повышенным до 350 бар давлением, полностью новую головку блока цилиндров и электронноуправляемую систему охлаждения.

«Дизельгейт» еще не успел отгреметь, а у Audi появилась новая 435-сильная четырехлитровая «восьмерка» с тройным наддувом, которая дебютировала на «заряженном» внедорожнике SQ7. Две традиционные турбины тут работают в паре с компрессором с электрическим приводом. Подобную схему применили на серийном автомобиле впервые.

Компрессор раскручивается 7-киловаттным (9,5 лошадиные силы) электрическим мотором, который разгоняет ротор до 70 тысяч оборотов всего за четверть секунды, позволяя избежать турбоямы. Электродвигатель запитан от отдельной электрической системы с напряжением 48 вольт и блоком литий-ионных аккумуляторов, расположенных под багажником «заряженного» кроссовера.

Сам четырехлитровый мотор V8 - тоже новый. Турбокомпрессоры тут расположены в развале блока цилиндров и работают по двухступенчатой схеме. На малых и средних оборотах система valvelift открывает один из двух выпускных клапанов в каждом цилиндре, раскручивая первую турбину. По мере увеличения нагрузки (2200-2700 оборотов в минуту) электроника открывает второй выпускной клапан, активизируется другой компрессор. Электрический нагнетатель работает в самом «низу».

В результате, четырехлитровый агрегат развивает 435 лошадиных сил, а максимальный крутящий момент в 900 Нм доступен в диапазоне 1000-3250 оборотов в минуту. Мотор, работающий вместе с восьмиступенчатым «автоматом», позволяет семиместному внедорожнику набирать «сотню» за 4,8 секунды. Максимальная скорость ограничена электроникой 250 километрами в час.

Новый мотор Audi в дальнейшем появится и на других моделях концерна Volkswagen, включая новую Porsche Panamera и Cayenne, а также дизельную модификацию Bentley Bentayga.

Еще один «глобальный» двигатель, который сначала дебютирует на Porsche Panamera Turbo и Cayenne Turbo следующего поколения, а впоследствии доберется и до моделей Audi, Bentley и даже Lamborghini. Это новейший четырехлитровый твин-турбо мотор V8, который придет на смену нынешней 4,8-литровой «турбо-восьмерке».

Уменьшение рабочего объема, помимо унификации с другими силовыми установками концерна Volkswagen, позволит флагманским моделям Porsche - Panamera Turbo и Cayenne Turbo - обойти повышенный налог на автомобили с моторами объемом свыше четырех литров, действующий в Китае.

В базовой версии новый двигатель будет развивать 550 лошадиных сил и 770 Нм крутящего момента, что на 30 сил и 70 Нм больше предыдущего агрегата 4.8. При этом в Porsche поговаривают, что на версиях Panamera Turbo S и Cayenne Turbo S он будет выдавать свыше 600 сил и 810 Нм.

Помимо высокой отдачи, новый мотор будет заметно эффективнее предыдущего. А значит, экономичнее. Ведь он получит систему деактивации половины цилиндров при малых нагрузках (в диапазоне от 950 до 3500 оборотов в минуту), что позволит на 30 процентов улучшить топливную экономию.

Твин-турбо «восьмерка» унифицирована с трехлитровым турбомотором V6, разработанным Audi, и создавалась с учетом ее применения как на модульной платформе MLB, так и на шасси MSB. Первая архитектура предназначена для машин с передним и полным приводом (читай, Audi A4, A5, A6 и производные, включая кроссоверы), а вторая - с приводом на задние или на все колеса (используется на больших моделях Porsche и Bentley).

Поэтому, помимо новых Panamera и Cayenne, четырехлитровый мотор пополнит линейку двигателей Audi A6, A8 и Q7 следующих поколений, а также двух моделей Bentley - Bentayga и Continental. Наконец, именно этим мотором, скорее всего, будет оснащаться и кроссовер Lamborghini Urus, который должен отнять у «Бентейги» звание «быстрейшего серийного внедорожника в мире».

На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания.

Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.

И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.

Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему. Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.

В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:

Двигатель Scuderi

Группа Scuderi представляет двигатель разделенного цикла - он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.

Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.

Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.

Разделение двигателя на горячую и холодную части

Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует разные температуры в разных частях двигателя, для достижения максимального КПД.

Большая проблема в обычном четырехтактном двигателе - первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в горячих условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.

Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.

Двигатель Pinnacle


В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.

Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2015, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.

Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.

В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.

Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100 км.

Замена обычных свечей зажигания на лазеры


Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.

Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.

Процесс сгорания TSCiTM

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость - это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное -- вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95?97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает -- ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI -- пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них -- неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный -- компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов -- в режиме HCCI. Инженеры Nissan также не стоят на месте -- недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.

Горячая стена

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Скудери.

Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, где создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, ее форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в камере смешивается с топливом и возгорается. Процесс сгорания намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда -- «горячая стена», которая служит аккумулятором энергии: неизменная температура и давление в ней сохраняются в 10?100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр.

Добросовестно работают на благо человека. Совершенствование моторов происходит постоянно. То конструкторы борются за увеличение мощности, то снижают массу двигателя. На развитие моторостроения оказывают влияние такие факторы, как перепады цен на нефть и ужесточение экологических норм. Несмотря на все эти сложности, являются основным источником энергии для автомобилей.

В последнее время появилось много новых разработок, которые направлены на совершенствование традиционных моторов. Некоторые их них находятся уже на стадии внедрения, другие новинки имеются только в виде опытных образцов. Однако пройдет немного времени и часть этих инноваций будут реализованы в новых машинах.

Лазеры вместо свечей зажигания

Еще недавно лазеры считались фантастическими приборами, о которых обычные люди узнавали из фильмов о марсианах. Но уже сегодня имеются разработки, направленные на замену лазерными устройствами. Традиционные свечи имеют один недостаток. Они не дают мощной искры, которая способна поджечь топливную смесь с большим количеством воздуха и малой концентрацией топлива. Повышение мощности приводило к быстрому износу электродов. Очень перспективно выглядит применение лазеров для воспламенения обедненной топливной смеси. Среди преимуществ лазерных свеч следует отметить возможность регулировки мощности и угла зажигания. Это позволит сразу не только повысить мощность двигателя, но сделать процесс сгорания более эффективным. Первые керамические лазерные приборы разработали инженеры в Японии. Они имеют диаметр 9 мм, что подходит для целого ряда автомобильных моторов. Новинка не потребует существенной доработки силовых агрегатов.

Инновационные роторные двигатели


В ближайшем будущем из могут пропасть поршни, распредвалы, клапаны. Ученые Мичиганского университета работают над созданием принципиально новой конструкции автомобильного мотора. Силовой агрегат будет получать энергию под действием взрывных волн, поддерживающих движение. Одной из основных деталей новой установки является ротор, в корпусе которого имеются радиальные каналы. При быстром вращении ротора топливная смесь проходит по каналам и мгновенно заполняет свободные отсеки. Конструкция позволяет заблокировать выходные порты, и горючая смесь не вытекает во время сжатия. Так как топливо попадает в отсеки очень быстро, происходит образование ударной волны. Она проталкивает порцию топливной смеси в центр, где происходит воспламенение, а затем и выхлоп отработанных газов. Благодаря такому оригинальному решению исследователям удалось сократить потребление топлива на 60%. Снизилась и масса мотора, что привело к созданию легкого автомобиля (400 кг). Достоинством нового мотора будет и малое количество трущихся деталей, поэтому ресурс двигателя должен увеличиться.

Разработка Scuderi


Сотрудники компании Scuderi подготовили свою версию двигателя будущего. Он имеет два типа поршневых цилиндров, что позволяет более эффективно использовать образующуюся энергию.
Уникальность разработки заключается в соединении двух цилиндров при помощи перепускного канала. В результате один из поршней создает компрессию, а во втором цилиндре происходит воспламенение топливной смеси и выброс газов.
Такой способ позволяет использовать экономнее выработанную энергию. Компьютерные модели показывают, что расход топлива в двигателе Scuderi будет меньше на 50%, чем у традиционных ДВС.

Двигатель с тепловым разделением

Повысить КПД двигателя Scuderi удалось благодаря тепловому разделению мотора на 2 части. В обычном четырехтактном двигателе остается нерешенной одна проблема. Разные такты лучше работают в определенных температурных диапазонах. Поэтому ученые решили разделить двигатель на два отсека и поставить между ними радиатор. Работа мотора будет происходить по следующей схеме. В холодных цилиндрах будет происходить впуск топливной смеси и ее сжатие. Таким образом достигается максимальная эффективность в холодных условиях. Процесс сгорания и выхлоп газов происходит в горячих цилиндрах. Предположительно данная технология обеспечит экономию топлива в пределах 20%. Ученые планируют доработать данный вид мотора и добиться 50%-ной экономии.

Мотор Skyactiv-G от Mazda


Японская компания Мазда всегда стремилась создавать инновационные двигатели. Например, некоторые серийные автомобили оснащаются роторными силовыми агрегатами. Теперь конструкторы автоконцерна основательно занялись экономией топлива. Уже в следующем году планируется выпустить автомобиль с двигателем Skyactiv-G. Он будет первой моделью из семейства Skyactiv. На малолитражной версии Mazda2 будет устанавливаться спортивный двигатель Skyactiv-G объемом 1,3 л. Распределять крутящий момент будет вариаторная коробка передач. Силовая установка отличается высокой степенью сжатия, благодаря чему достигается экономия топлива в пределах 15%. Разработчики утверждают, что средний расход бензина составит около 3л/100 км.


Оппозитными моторами комплектовали свои машины разные автопроизводители. Данная конструкция не лишена изъянов, над которыми инженеры продолжают работать. Как известно, в оппозитном двигателе цилиндры расположены горизонтально, и поршни перемещаются в противоположных направлениях. Конструкторы EcoMotors разместили в каждом цилиндре по два поршня, которые направлены друг к другу. Коленчатый вал находится между цилиндрами, а для перемещения поршней в одном цилиндре используются шатуны разной длины. Такое расположение поршневой группы позволило снизить вес двигателя, так как не требуются массивные головки блока цилиндров. Существенно меньше и ход поршней в оппозитном агрегате, чем в традиционном бензиновом моторе. По мнению инженеров EcoMotors, автомобиль с двигателем OPOC должен потреблять около 2 л бензина на 100 км пути.

Силовой агрегат Pinnacle


Еще одна перспективная разработка сделана на базе оппозитного двигателя. В моторе Pinnacle два поршня двигаются навстречу друг другу, находясь в одном цилиндре. Между ними и происходит воспламенение топливной смеси. Двигатель имеет два коленчатых вала и одинаковой длины шатуны. Данная конструкция позволяет получить колоссальную экономию энергии при низкой себестоимости силового агрегата. Предполагается, что эффективность бензинового двигателя удастся увеличить на 50%. По всей планете ученые ищут новые подходы к созданию мощных, экономных и экологичных моделей ДВС. Отдельные разработки выглядят достаточно перспективно, у других будущее не такое безоблачное. Однако только время рассудит, кто будет купаться во славе, а чьи разработки попадут на пыльные полки архива.

← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»