Уравнение движения электропривода. Основное уравнение движения электропривода

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

ТИПОВЫЕ РАСЧЕТЫ В ЭЛЕКТРОПРИВОДЕ

Механика электропривода

4.1.1. Приведение статических моментов и моментов инерции к валу двигателя

Механическая часть рабочих органов (РО) содержит элементы, вращающиеся с разными скоростями. Передаваемые моменты в связи с этим

также различны. Поэтому необходимо заменить реальную кинематическую

схему РО на расчетную схему, в которой все элементы вращаются со скоростью вала приведения. Чаще всего приведение осуществляют к валу

двигателя.

В задачах требуется по известной кинематической схеме РО составить

расчетную схему, в которой моменты сопротивления движению (статические моменты) и моменты инерции приводятся к валу двигателя. Для этого необходимо изучить кинематическую схему РО, разобраться с принципом работы механической части, выявить основную его технологическую работу и места выделения потерь мощности.

Критерием приведения статических моментов к валу двигателя является энергетический баланс механической части электропривода, обеспечивающий равенство мощностей реальной и расчетной схем электропривода.

Критерием приведения моментов инерции к валу двигателя является равенство запаса кинетической энергии механической части реальной и расчетной схем электропривода.

Критерием приведения жесткости упругой системы к валу двигателя

является равенство запаса потенциальной энергии упругого звена механической части в реальной и расчетной схемах электропривода.

Статические моменты, моменты инерции на валу РО рассчитываются по формулам .

на валу РО и на валу двигателя по заданным технологическим параметрам

механизма подачи (таблица 2.1.1.2, вариант 35).

Технологические данные механизма подачи станка:

F х =6 кН; m=2,4 т; v=42 мм/с; D хв =44 мм; m хв =100 кг; α=5,5°; φ=4°;

i 12 =5, J дв =0,2 кгм2; J1=0,03 кгм 2 ; J2=0,6 кгм 2 ; η 12 =0,9; μ с =0,08.

Решение

После изучения принципа работы механизма и его кинематической схемы определяем участки выделения потерь:

– в редукторе (потери учитываются кпд η 12);

– в передаче « винт – гайка » (потери рассчитываются углом трения φ в нарезке винта);

– в подшипниках ходового винта (потери рассчитываются через коэффициент трения в подшипниках, однако в рассмотренной литературе эти



потери не учитываются).

4.1.1.1. Угловая скорость ходового винта (рабочего органа)

ω ро = v/ρ ,

где ρ – радиус приведения передачи « винт – гайка » с шагом h, диаметром

d ср и углом нарезки резьбы α.

ρ = v/ω ро = h/ (2*π) = (π*d ср *tg α) / (2*π) = (d ср /2)*tg α.

ρ = (d ср /2)*tg α = (44/2)*tg 5,5° = 2,12 мм.

ω ро = v/ρ = 42/2,12 = 19,8 рад/с.

4.1.1.2. Момент на валу ходового винта (рабочего органа) с учетом потерь в

передаче «винт – гайка» углом трения φ:

М ро = F п *(d ср /2)* tg (α + φ),

где F п – суммарное усилие подачи.

F п = 1,2*F х + (F z + F y + 9,81*m)*μ с =

1,2*F x + (2,5*F x + 0,8*F x + 9,81*m)*μ с =

1,2*6 + (2,5*6 + 0,8*6 + 9,81*2,4)*0,08 = 10,67 кН.

М ро = F п *(d ср /2)* tg (α + φ) =

10,67*(0,044/2)*tg (5,5° + 4°) = 39,27 Нм.

4.1.1.3. Мощность на валу рабочего органа полезная:

– без учета потерь в передаче « винт – гайка »

Р ро = F х *v = 6*103 42*10-3= 252 Вт;

– с учетом потерь

Р ро = М ро *ω ро = 39,27*19,8 = 777,5 Вт.



4.1.1.4. Статический момент, приведенный к валу двигателя,

М рс = М ро / (i 12 *η 12) = 39,27 / (5*0,9) = 8,73 Н*м.

4.1.1.5. Угловая скорость вала двигателя

ω дв = ω ро *i 12 = 19,8*5 = 99 рад /c.

4.1.1.6 Мощность на валу двигателя

Р дв = М рс *ω дв = 8,73*99,1 = 864,3 Вт.

Находим элементы кинематической схемы, запасающие кинетическую энергию: суппорт массой m, ходовой винт массой m хв, шестерни редуктора J1

и J2 , ротор электродвигателя – J дв.

4.1.1.7. Момент инерции рабочего органа определяется массой m суппорта,

перемещающейся со скоростью v, и моментом инерции ходового винта J хв.

Момент инерции поступательно движущегося суппорта

J с = m*v 2 / ω ро 2 = m*ρ 2 = 2400*0,002122 = 0,0106 кгм 2 .

Момент инерции ходового винта

J хв = m хв *(d ср /2) 2 = 100*(0,044 /2) 2 = 0,0484 кгм 2 .

Момент инерции рабочего органа

J ро = J с + J хв = 0,0106 + 0,0484 = 0,059 кгм 2 .

4.1.1.8. Момент инерции рабочего органа, приведенный к валу двигателя,

J пр = J ро / i 12 2 = 0,059 / 52 =0,00236 кгм 2 .

4.1.1.9. Момент инерции передачи, приведенный к валу двигателя,

J пер = J1 + J2 / i 12 2 = 0,03 + 0,6 / 52 = 0,054 кгм 2 .

4.1.1.10. Коэффициент, учитывающий момент инерции передачи в моменте

инерции ротора двигателя,

δ = (J дв +J пер)/J дв = (0,2 + 0,054) / 0,2 = 1,27.

4.1.1.11.Суммарный момент инерции механической части электропривода

J = δ*J дв + J пр = 1,27*0,2 + 0,00236 = 0,256 кгм 2 .

Основное уравнение движения электропривода

При переменных статических моментах и моментах инерции, зависящих от скорости, времени, угла поворота вала двигателя (линейного перемещения РО), уравнение движения электропривода записывается в общем виде:

М(х) – М с (х) = J(х)*dω / dt + (ω/2)*dJ(x)/ dt.

При постоянном моменте инерции J = const уравнение упрощается

М(х) – М с (х) = J*dω / dt, и его называют основным уравнением движения .

Правую часть уравнения М(х) – М с (х) = М дин называют динамическим

моментом. Знак М дин определяет знак производной dω/dt и состояние электропривода:

– М дин = dω / dt > 0 – двигатель разгоняется;

– М дин = dω / dt < 0 – двигатель снижает скорость;

– М дин = dω / dt = 0 – установившийся режим работы двигателя, его скорость неизменна.

Темп разгона зависит от момента инерции J электропривода, определяющего способность механической части электропривода запасать

кинетическую энергию.

Для анализа режимов работы и решения задач удобнее записать основное уравнение движения в относительных единицах (о.е.). Приняв за базовые значения момента М б = М н – номинальный электромагнитный момент двигателя, скорости ω б = ω он – скорость идеального холостого хода при номинальном напряжении на якоре и номинальном токе возбуждения, основное уравнение движения в о.е. записывается в виде

М - М с = Т д * dω/dt,

где T д = J * ω он / М н – электропривода, учитывающая и приведенный момент инерции РО. Наличие в уравнении Т д

свидетельствует о записи уравнения в о.е.

Задача 4.1.2.1

Рассчитать для механизма с двигателем (Р н =8,1 кВт, ω н = 90 рад/с, U н = 100 В, I н = 100 А) и суммарным моментом инерции J = 1 кгм 2 динамический момент М дин, ускорение электропривода ε, конечное значение скорости ω кон, угол поворота вала двигателя α за промежуток времени Δt = t i / T д = 0,5, если М = 1,5, М с = 0,5, ω нач =0,2.

Решение

Основное уравнение движения в о.е.

М − М с = Т д dω / dt

Механическая постоянная времени двигателя

Т д = J*ω он /М н.

Значения ω он и М н рассчитаем по каталожным данным двигателя (см. задачу 4.2.1).

Скорость идеального холостого хода

ω он = U н / кФ н = 100/1 = 100 рад/с.

Номинальный электромагнитный момент

М н = кФ н *I н = 1*100 = 100 Нм.

Механическая постоянная времени

Т д = J*ω он /М н = 1*100 / 100 = 1 с.

4.1.2.1. Динамический момент

М дин = М – М с = 1,5 – 0,5 = 1.

4.1.2.2. Ускорение электропривода (при t б = Т д)

ε= dω / (dt / T д) = (М – М с) = М дин = 1.

Приращение скорости за промежуток времени Δt = t i / T д = 0,5:

Δω = (М – М с)*t i / T д = (1,5 – 0,5) * 0,5 = 0,5.

4.1.2.3. Конечное значение скорости на участке

ω кон = ω нач + Δω = 0,2 + 0,5 = 0,7.

4.1.2.4. Приращение угла поворота

Δα = ω нач *Δt + (ω кон + ω нач)*Δt / 2 =

0,2 * 0,5 +(0,7 + 0,2)*0,5 / 2 = 0,325.

Определим полученные значения в абсолютных единицах:

М дин = М дин * М н = 1* 100 = 100 Нм;

ε = ε* ω он / t б = 1 * 100 / 1 = 100 рад / с 2 ;

Δω = Δω* ω он = 0,5* 100 = 50 рад / с;

ω кон = ω кон *ω он = 0,7*100 = 70 рад / с;

Δα = Δα * ω он *t б = 0,325*100 *1 = 32,5 рад.

4.1.3. Переходные процессы механической части электропривода

Для расчета и построения нагрузочных диаграмм М(t) и ω(t) используется решение основного уравнения движения

М − М с = Т д d ω / dt ,

из которого для конечных приращений при М = const и М c = const для заданного t i получим приращение скорости

Δω = (М – М с)*t i / Т д

и значение скорости в конце участка

ω = ω нач + Δω

Задача 4.1.3.1

Для двигателя (ω он =100 рад/с, M н =100 Нм, J=1кгм 2) рассчитать ускорение и построить переходный процесс ω(t), если М = 2, ω нач = 0, М с = 0.

Решение

Механическая постоянная времени

Т д = J * ω он / М н = 1 * 100 / 100 = 1 с.

Приращение скорости Δω = (М – М с)*t i / Т д = (2 – 0)*t i /Т д,

и при t i = Т д получаем Δω = 2.

Скорость за это время достигнет значения

ω = ω нач + Δω = 0+2 = 2.

Значения ω = 1 скорость достигнет за Δt = 0,5, в этот момент времени разгон прекращают, снижая момент двигателя до величины статического момента М = М с (см. рис. 4.1.3.1).

Рис. 4.1.3.1. Механический переходный процесс при М=const

Задача 4.1.3.2

Для двигателя (ω он =100 рад/с, M н =100 Нм, J=1кгм 2) рассчитать ускорение и построить переходный процесс реверса ω(t), если М = – 2, ω нач =

Решение

Приращение скорости

Δω = (М – М с)*t i / Т д = (–2 –1)* t i / Т д.

За базовое время t б =Т д приращение скорости Δω = –3, конечная скорость

ω кон = ω нач + Δω = 1–3 = – 2.

Двигатель остановится (ω кон = 0) при Δω = – 1 за время t i = Т д / 3. Реверс закончится при ω кон = – 1, при этом Δω = –2, t i = 2* Т д /3. В этот момент времени следует снизить момент двигателя до М = М с. Рассмотренный переходный процесс справедлив для активного статического момента (см.

рис. 4.1.3.2,а).

При реактивном статическом моменте, который изменяет свой знак при изменении направления движения, переходный процесс распадается на два

этапа. До остановки двигателя переходный процесс протекает также, как и при активном М с. Двигатель остановится, ω кон = 0, тогда Δω = – 1, время торможения t i = Т д / 3.

При изменении направления движения меняются начальные условия:

М с = – 1; ω нач = 0; М = – 2, начальное время Δt нач = Т д /3.

Тогда приращение скорости составит

Δω = (М – М с)*t i / Т д = (–2 – (–1))* t i / Т д = – t i / Т д.

При t i =Т д приращение скорости Δω = – 1, ω кон = –1, разгон в обратную сторону произойдет за Δt = Т д, реверс закончится за Δt = 4*Т д /3. В этот момент времени следует снизить момент двигателя до М = М с (см. рис. 4.1.3.2,б). Таким образом, при реактивном М с время реверса увеличилось

При проектировании и исследовании электропривода возникает задача в округлении различных механических величин (скорости, ускорения, пути, угла поворота, моментов усилий), чтобы сделать математическое описание электропривода определенным, принимают одно из 2-х возможных направлений вращения привода за положительное направление, а второе за отрицательное. Принятое за положительное направление отсчета - сохраняется единым для всех величин характеристик движения привода (скорости, момента, ускорения, угла поворота). Это понимается т.о., что если направление момента и скорости в рассмотренном интервале времени совпадают, т.е. скорость и момент имеют одинаковые знаки, то работа совершается двигателем, который создает данный момент. В случае, когда знаки момента и скорости разные, то двигатели, создающие данный момент потребляют энергию.

Понятие о реактивном и активном моментах сопротивления.

Движение электроприводов определяется действием 2-х моментов - момента развиваемого движением и момента сопротивления. Различают два типа момента сопротивления - реактивный и активный. Реактивный момент сопротивления появляется только вследствие движения привода. Это противоречит реакции механического звена на движение.

К реактивным моментам относят: момент трения, момент на рабочем органе, на металлорежущих станках, вентиляторах и т.д.

Реактивный момент сопротивления всегда направлен против движения, т.е. имеет противоположный знак направления скорости. При изменении направления вращения меняется и знак реактивного момента. Элемент, создающий реактивный момент всегда является потребителем энергии.

реактивная хар-ка;активная механическая хар-ка.

Активный момент сопротивления появляется независимо от движения электропривода и создается посторонним источником механической энергии.

Например: момент отвеса падающего груза. Момент создается потоком воды и т.д.

Направление активного момента не зависит от направления движения привода, т.е. при изменении направления вращения привода знак активного момента привода не меняется. Элемент, создающий активный момент, может быть как источником, так и потребителем механической энергии.

Уравнение движения и его анализ.

Для анализа движения ротора или движения якоря используют основной закон динамики, который говорит о том, что для вращения тела векторная сумма моментов, действующая относительно оси вращения, равна производной момента количества движения.

В электроприводе составляющими результативного момента является момент двигателя и момент сопротивления. Оба момента могут быть направлены как в сторону движения ротора двигателя, так и против него. Чаще всего в электроприводе используют двигательный режим работы. Электрические машины при этом моменте сопротивления имеют тормозной характер по отношению к ротору и направлены на встречу момента двигателя. Поэтому за положительное направление момента сопротивления принимают направление противоположное направлению положительного момента двигателя. В результате уравнение движения записывается так:

В этом выражении оба момента являются алгебраическими величинами, поскольку они действуют относительно одной и той же оси.

М-М с – динамический момент.

Направление динамического момента всегда совпадает с направлением ускорения dw / dt . Последнее выражение справедливо для постоянного радиуса инерции вращения массы.

В зависимости от знака динамического момента различают следующие работы привода:

    М дин 0 ,dw / dt 0 ,w 0 – разбег или торможение приw 0 .

    М дин 0 ,dw / dt 0 ,w 0 – торможение, приw 0 - разбег.

    М дин =0 ,dw / dt =0 – установившийся режимw = const .

Или частный случай w =0 – покой.

Основное уравнение движения электропривода связывает между собой электромагнитный момент двигателя, момент статистический, момент интеграции и скорость вала двигателя.

Разность, записанная в левой части выражения, представляет собой динамический момент

Если динамический момент не равен 0, то электропривод работает в динамическом режиме т.е. имеет место изменение скорости.

Если или то электропривод работает в статическом (т.е. устанавливается) режиме работы.


ПОТЕРИ В МЕХАНИЧЕСКОЙ ПЕРЕДАЧЕ. КПД ПЕРЕДАЧИ

Потери энергии (мощности) в передаче учитывают двумя способами:

1) приближенным, т.е. с помощью КПД и 2) уточненным, т.е. непосредственным вычислением составляющих потерь. Рассмотрим эти способы.

А. Учет потерь в передачах с помощью КПД.

Механическая часть электропривода (рис.1.17) включает ротор электродвигателя ЭД с угловой скоростью w и моментом М, передаточный механизм ПМ, имеющий КПД h п и передаточное число j, и исполнительный механизм ИМ, на валу которого приложен момент М м и скорость вала w м. Для наглядности обозначим статический момент в двигательном режиме , а в тормозном - . Для двигательного режима работы, исходя из закона сохранения энергии, можно записать равенство

,
, где ,

- момент механизма, приведенный к валу электродвигателя.

Для тормозного режима будем иметь такое равенство

,
,

Но КПД является переменной величиной, зависящей от постоянных и переменных потерь в передаче. Определим потерю момента в передаче для двигательного режима

,

Примем допущение, что в тормозном режиме будет такая же потеря момента. Тогда статический момент в тормозном режиме можно записать в таком виде:

1) , тогда , что соответствует тормозному режиму, когда двигатель развивает тормозной момент. Применительно к грузоподъемному механизму это будет опускание тяжелого груза, когда момент от действия груза на валу двигателя М г превышает момент потерь DМ в передаче. Получаем так называемый тормозной спуск;

2) , тогда , что соответствует не тормозному, значит, двигательному режиму. Для грузоподъемного механизма это эквивалентно опусканию крюка, когда момент от его веса на валу двигателя М К меньше момента потерь DМ в передаче. Имеем так называемый силовой спуск.

Потери момента в передаче приближенно выражаются через две составляющие, одна из которой для данной передачи является постоянной величиной, а вторая – пропорциональна передаваемому моменту:

где – коэффициент постоянных потерь;

b – коэффициент переменных потерь;

М с.ном – номинальный статический момент передачи;

М перед – передаваемый момент, который равен моменту на выходном (по направлению передачи энергии) валу передачи.

Для установившегося двигательного режима . КПД передачи можно представить отношением мощностей в установившемся режиме.

суммой момента двигателя и момента сопротивления. В отдельных случаях момент двигателя, равно как и момент сопротивления, может быть направлен как в сторону движения ротора, так и против этого движения. Однако во всех случаях независимо от движущего или тормозного характера момента двигателя и момента сопротивления в задачах электропривода выделяются именно указанные составляющие результирующего момента. Последнее определяется тем, что чаще всего момент сопротивления задан заранее, а момент двигателя выявляется в процессе расчета и тесно связан с величинами токов в его обмотках, которые позволяют оценить нагрев двигателя.

В системах электропривода основным режимом работы электрической машины является двигательный. При этом момент сопротивления имеет тормозящий характер по отношению к движению ротора и действует навстречу моменту двигателя. Поэтому положительное направление момента сопротивления принимают противоположным положительному направлению момента двигателя, в результате чего уравнение (2.8) при J = const может быть представлено в виде:

Уравнение (2.9) называют основным уравнением движения электропривода. В уравнении (2.9) моменты являются алгебраическими, а нс векторными величинами, поскольку оба момента М и действуют относительно одной и той же оси вращения.

где угловое ускорение при вращательном движении.

Правую часть уравнения (2.9) называют динамическим моментом (), т. е.

Из (2.10) следует, что направление динамического момента всегда совпадает с направлением ускорения электропривода.

В зависимости от знака динамического момента различают следующие режимы работы электропривода:

Момент, развиваемый двигателем, не является постоянной величиной, а представляет собой функцию какой-либо одной переменной, а в некоторых случаях и нескольких переменных. Эта функция задается аналитически или графически для всех возможных областей ее изменения. Момент сопротивления также может быть функцией какой-либо переменной: скорости, пути, времени. Подстановка в уравнение движения вместо М и Л/с их функций приводит в общем случае к нелинейному дифференциальному уравнению.

Уравнение движения в дифференциальной форме (2.9) справедливо для постоянного радиуса инерции вращающейся массы. В некоторых случаях, например при наличии кривошипно-шатунного механизма (см. рис. 2.2, г), в кинематической цепи привода радиус инерции оказывается периодической функцией угла поворота. В этом случае можно воспользоваться интегральной формой записи уравнения движения, исходящей из баланса кинетической энергии в системе:

(2.11)

где J((o !/2) – запас кинетической энергии привода для рассматриваемого момента времени; 7,(0)^,/2) – начальный запас кинетической энергии привода.

Дифференцируя уравнение (2.11) по времени с учетом того факта, что 7 – функция угла поворота <р, получаем:

(2.12)

Так как , то, разделив (2.12) на угловую скорость <о, получим уравнение движения при 7 =J[ в следующем виде:

(2.13)

В ряде случаев целесообразно рассматривать движение на рабочем органе производственной машины (такие задачи часто возникают для подъемно-транспортных машин с поступательно движущимся рабочим органом). В этом случае следует использовать уравнения для поступательного движения. Уравнение движения электропривода для поступательного движения получают так же, как и для вращательного движения. Так при т = const уравнение движения принимает вид:

При т =f зависит от момен­та инерции движущихся частей системы, в том числе и от момента инерции двигателя, который пока не известен. В связи с этим в тех случаях, когда динамические режимы привода играют заметную роль, задача решается в два эта­па:

1) предварительный выбор двигателя;

2) проверка дви­гателя по перегрузочной способности и по нагреву.

Предварительный выбор мощности и угловой скорости дви­гателя проводится на основании нагрузочных диаграмм рабочей машины или механизма. Затем, с учетом момента инер­ции предварительно выбранного двигателя, строят нагрузоч­ные диаграммы привода. Нагрузочная диаграмма двигателя (привода) представляет собой зависимость вращающего момента, тока или мощности двигателя от времени M, Р, I=f(t). Она учитывает как статические, так и динамические нагрузки, преодолеваемые электроприводом в течение цикла работы. На основании на­грузочной диаграммы привода двигатель проверяется по до­пустимому нагреву и перегрузке и в случае неудовлетвори­тельных результатов проверки выбирается другой двигатель большей мощности. На рис. 2 представлены нагрузочные ди­аграммы производственного механизма (б), электропривода (г), а также диаграмма динамических моментов (в).

Нагрев электродвигателей

Процесс электромеханического преобразования энергии всегда сопровождается потерей части ее в самой машине. Преобразуясь в тепловую энергию, эти потери вызывают нагрев элек­трической машины. Потери энергии в машине могут быть по­стоянными (потери в железе, на трение и т. п.) и переменными. Переменные потери являются функцией тока нагрузки

где -ток в цепи якоря, ротора и статора; - сопротивление обмоток якоря (ротора). Для номинального режима работы

где , - номинальные значения соответственно мощности и к. п. д. двигателя.

Уравнение теплового баланса двигателя имеет вид:

, (19)

где - тепловая энергия, выделившаяся в двигателе за время ; - часть тепловой энергии, выделяющаяся в окружающую среду; - часть тепловой энергии, аккумулируемая в двигателе и вызывающая его нагрев.

Если уравнение теплового баланса выразить через тепловые параметры двигателя, то получим

, (20)

где А - теплоотдача двигателя, Дж/(с×°С); С - теплоемкость двигателя, Дж/°С; - превышение температуры двигателя над температурой окружающей среды

.

Стандартное значение температуры окружающей среды принимается 40 °С. =1–2 ч); закрытых двигателей 7 - 12 ч ( = 2 – 3 ч).

Наиболее чувствительным элементом к повышению температуры является изоляция обмоток. Изоляционные материалы, которые применяют в электрических машинах, разделяются по классу нагревостойкости в зависимости от предельной допустимой температуры. Правильно выбранный по мощности электро­двигатель нагревается при работе до номинальной темпера­туры, определяемой классом нагревостойкости изоляции (табл. 1). Помимо температуры окружающей среды на процесс нагрева двигателя большое влияние оказывает интенсивность теплоотдачи его поверхности, которая зависит от способа охлаждения, в частности от скорости потока охлаждающего воздуха. Поэтому у двигателей с самовентиляцией при снижении скорости теплоотдача ухудшается, что требует снижения его на­грузки. Например, при длительной работе такого двигателя со скоростью, равной 60 % от номинальной, мощность должна быть снижена вдвое.

Номинальная мощность двигателя повышается с увеличе­нием интенсивности его охлаждения. В настоящее время для мощных приводов прокатных станов разрабатываются так на­зываемые криогенные двигатели, охлаждаемые сжиженными газами.Таблица 1.1

Классы нагревостойкости изоляции двигателей



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»