Взрыв в кольце. Детонационный ракетный двигатель: испытания, принцип работы, преимущества

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Освоение космического пространства невольно ассоциируется с космическими кораблями. Сердцем любой ракеты-носителя является ее двигатель. Он должен развить первую космическую скорость - около 7,9 км/с, чтобы доставить космонавтов на орбиту, и вторую космическую, чтобы преодолеть поле тяготения планеты.

Добиться этого непросто, но ученые постоянно ищут новые пути решения этой задачи. Конструкторы из России шагнули еще дальше и сумели разработать детонационный ракетный двигатель, испытания которого завершились успехом. Это достижение можно назвать настоящим прорывом в области космического машиностроения.

Новые возможности

Почему на детонационные двигатели возлагают большие надежды? По расчетам ученых, их мощность будет в 10 тыс. раз больше, чем мощность существующих ракетных двигателей. При этом они будут потреблять гораздо меньше топлива, а их производство отличится низкой стоимостью и рентабельностью. С чем это связано?

Все дело в реакции окисления горючего. Если в современных ракетах используется процесс дефлаграции - медленное (дозвуковое) горение топлива при постоянном давлении, то детонационный ракетный двигатель функционирует за счет взрыва, детонации горючей смеси. Она сгорает со сверхзвуковой скоростью с выделением огромного количества тепловой энергии одновременно с распространением ударной волны.

Разработкой и испытанием российского варианта детонационного двигателя занималась специализированная лаборатория «Детонационные ЖРД» в составе производственного комплекса «Энергомаш».

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

Решив эти задачи, удастся создать детонационный ракетный двигатель, который по своим техническим характеристикам обгонит время. При этом ученые называют такие его преимущества:

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Принцип работы: импульсный и непрерывный

В настоящее время ученые ведут разработку установок с импульсным и непрерывным рабочим процессом. Принцип работы детонационного ракетного двигателя с импульсной схемой работы основан на циклическом заполнении камеры сгорания горючей смесью, последовательном ее воспламенении и выбросе продуктов сгорания в окружающую среду.

Соответственно, при непрерывном рабочем процессе топливо подается в камеру сгорания непрерывно, горючее сгорает в одной или нескольких детонационных волнах, которые непрерывно циркулируют поперек потока. Преимуществами таких двигателей являются:

  1. Однократное зажигание топлива.
  2. Относительно простая конструкция.
  3. Небольшие габариты и масса установок.
  4. Более эффективное использование горючей смеси.
  5. Низкий уровень производимого шума, вибрации и вредных выбросов.

В перспективе, используя данные преимущества, детонационный жидкостный ракетный двигатель непрерывной схемы работы вытеснит все существующие установки благодаря своим массо-габаритным и стоимостным характеристикам.

Испытания детонационного двигателя

Первые испытания отечественной детонационной установки прошли в рамках проекта, учрежденного Министерством образования и науки. В качестве опытного образца был представлен небольшой двигатель с камерой сгорания диаметром 100 мм и шириной кольцевого канала в 5 мм. Испытания проводились на специальном стенде, фиксировались показатели при работе на различных видах горючей смеси - водород-кислород, природный газ-кислород, пропан-бутан-кислород.

Испытания детонационного ракетного двигателя на кислородно-водородном топливе доказали, что термодинамический цикл этих установок на 7 % эффективнее, чем при работе других установок. Кроме того, было экспериментально подтверждено, что с увеличением количества подаваемого горючего увеличивается и тяга, а также количество детонационных волн и частота вращения.

Аналоги в других странах

Разработкой детонационных двигателей занимаются ученые ведущих стран мира. Наибольших успехов в этом направлении достигли конструкторы из США. В своих моделях они реализовали непрерывный способ работы, или ротационный. Американские военные планируют использовать данные установки для оснащения надводных кораблей. Благодаря меньшей массе и небольшим размерам при высокой выдаваемой мощности они помогут увеличить эффективность боевых катеров.

Стехиометрическую смесь водорода и кислорода использует для своей работы американский детонационный ракетный двигатель. Преимущества такого источника энергии в первую очередь экономические - кислорода сгорает ровно столько, сколько того требуется для окисления водорода. Сейчас для обеспечения военных кораблей углеродным топливом правительство США тратит несколько миллиардов долларов. Стехиометрическое горючее снизит расходы в несколько раз.

Дальнейшие направления разработки и перспективы

Новые данные, полученные в результате испытаний детонационных двигателей, определили применение принципиально новых методов построения схемы работы на жидком топливе. Но для функционирования такие двигатели должны иметь высокую жаропрочность ввиду большого количества выделяемой тепловой энергии. В настоящий момент ведется разработка особого покрытия, которое обеспечит работоспособность камеры сгорания под высокотемпературным воздействием.

Особое место в дальнейших исследованиях занимает создание смесительных головок, с помощью которых можно будет получить капли горючего материала заданного размера, концентрации и состава. По решению данных вопросов будет создан новый детонационный жидкостный ракетный двигатель, который станет основой нового класса ракет-носителей.

Объединенная двигателестроительная корпорация (ОДК) намерена в ближайшее время начать создание новых авиационных и ракетных двигателей, в которых будут использоваться детонационные технологии.

Демонстраторы технологий детонационных дозвукового и сверхзвукового двигателей уже созданы. На испытаниях они показали на 30–50% лучшие удельные тягу и расход топлива по сравнению с обычными силовыми установками, сообщило РИА "Новости" со ссылкой на данные корпорации.

В проекте по созданию детонационных двигателей будет участвовать Опытно-конструкторское бюро им. Люльки. Бюро предложило разработать семейство таких силовых установок, которые можно было бы использовать на беспилотных летательных аппаратах, крылатых ракетах, воздушно-космических самолетах и ракетах.

Детонационные двигатели отличаются:

– горением топливной смеси, сопровождающимся прохождением по ней ударной волны, которая формируется за счет сверхзвукового распространения по топливной смеси фронта горения;

– широким диапазоном скоростей – от дозвуковых до гиперзвуковых, что может помочь при создании гиперзвуковых ракет, проектирование которых активно ведется в России в последние годы.

В 2013 году Опытно-конструкторское бюро им. Люльки испытало опытный уменьшенный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Во время испытаний средняя измеренная тяга силовой установки составила около ста килограммов, а длительность непрерывной работы – более десяти минут. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

По оценке конструкторского бюро, детонационные двигатели позволят увеличить тяговооруженность самолетов в 1,5–2 раза. Работы по созданию пульсирующих детонационных двигателей ведутся в России с 2011 года.

Помимо России в мире сразу несколько компаний занимаются разработкой детонационных двигателей: французская компания SNECMA и американские General Electric и Pratt & Whitney.

ОСНОВЫ ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ

Если бы удельный расход топлива не рос с увеличением скорости полета, то применяя современные решения для улучшения внешней аэродинамики, увеличивая высоту полета, на сверхзвуковых скоростях можно было бы добиться таких же характеристик дальности, что и у дозвукового магистрального самолета. Но вот внутренняя аэродинамика сверхзвуковых самолетов имеет неустранимый недостаток - на сверхзвуковых скоростях удельный расход топлива традиционной силовой установки монотонно растет по мере увеличения скорости на любых высотах полета. Выход видится в применении двигателей, основанных на иных принципах, нежели традиционный термодинамический цикл Брайтона горения топлива при постоянном давлении. К последним относятся пульсирующие воздушно-реактивные и детонационные двигатели. В статье рассмотрены преимущества использования детонационного горения в турбореактивных и ракетных двигателях.

Одним из лучших в термодинамическом плане является детонационный двигатель. Благодаря тому, что в нем сжигание топлива происходит в ударных волнах примерно в 100 раз быстрее, чем при обычном медленном горении (дефлаграции), этот тип двигателя теоретически отличается рекордной мощностью, снимаемой с единицы объема, по сравнению со всеми другими типами тепловых двигателей.


Сравнение литровой мощности современных двигателей.

Вопрос об использовании детонационного горения в энергетике и реактивных двигателях впервые был поставлен Я.Б. Зельдовичем еще в 1940 г. По его оценкам прямоточные воздушно-реактивные двигатели, использующие детонационное сгорание топлива, должны иметь максимально возможную термодинамическую эффективность.

НАПРАВЛЕНИЯ РАБОТ ПО ИМПУЛЬСНЫМ ДЕТОНАЦИОННЫМ ДВИГАТЕЛЯМ

Направление №1 - Классический импульсный детонационный двигатель

Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо, можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Традиционные импульсные детонационные двигатели представляют собой длинные трубы, по которым с небольшой частотой следуют ударные волны. Система волн сжатия и разрежения автоматически регулирует подачу топлива и окислителя. Из-за низкой частоты следования ударных волн (единицы Гц) время, в течение которого происходит сжигание топлива, по сравнению с характерным временем цикла, мало. В результате, несмотря на высокий КПД собственно детонационного сжигания (на 20-25% больше, чем у двигателей с циклом Брайтона) общий КПД таких конструкций низкий.

Основная задача в этой области на современном этапе - разработка двигателей с высокой частотой следования ударных волн в камере сгорания или создание двигателя с непрерывной детонацией (CDE).

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую "тяговой стенкой". Простота устройства ИДД - неоспоримое его достоинство. Несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

– низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

– высокие тепловые и вибрационные нагрузки.


Принципиальная схема импульсно-детонационного двигателя (ИДД).

Направление №2 - Многотрубный ИДД

Основной тенденцией при разработках ИДД является переход к многотрубной схеме. В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления, в частности, возможных низкочастотных колебаний в донной области между трубами.


Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов.

Направление №3 - ИДД с высокочастотным резонатором


Схема ИДД с высокочастотным резонатором.

Тяговый Модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие.


Схема ИДД с высокочастотным резонатором. СЗС-сверхзвуковая струя, УВ - ударная волна, Ф - фокус резонатора, ДВ - детонационная волна, ВР- волна разрежения, ОУВ - отраженная ударная волна.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки в МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом.

Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера. Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье - Стокса без использования моделей турбулентности (задача неподъемная на современном этапе).

Из представленных выше схем видно, что исследуемые сегодня схемы ИДД - это однорежимные двигатели, имеющие весьма ограниченный диапазон регулирования, поэтому прямое их использование в качестве единственной силовой установки на самолете нецелесообразно. Другое дело - ракетный двигатель.

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний . Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30% .

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение . В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания . Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз .

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива . Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный водород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в истории проект подобного рода удалось довести до стадии стендовых проверок . Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т .

Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах . П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука .

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу . Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.

Первый запуск опытного изделия «Ифрит»

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера .

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

В конце января появились сообщения о новых успехах российской науки и техники. Из официальных источников стало известно, что один из отечественных проектов перспективного реактивного двигателя детонационного типа уже прошел стадию испытаний. Это приближает момент полного завершения всех требуемых работ, по результатам которых космические или военные ракеты российской разработки смогут получить новые силовые установки с повышенными характеристиками. Более того, новые принципы работы двигателей могут найти применение не только в сфере ракет, но и в других областях.

В последних числах января вице-премьер Дмитрий Рогозин рассказал отечественной прессе о последних успехах научно-исследовательских организаций. Среди прочих тем он затронул процесс создания реактивных двигателей, использующих новые принципы работы. Перспективный двигатель с детонационным горением уже был доведен до испытаний. По словам вице-премьера, применение новых принципов работы силовой установки позволяет получить значительный прирост характеристик. В сравнении с конструкциями традиционной архитектуры наблюдается рост тяги порядка 30%.

Схема детонационного ракетного двигателя

Современные ракетные двигатели разных классов и типов, эксплуатируемые в различных областях, используют т.н. изобарический цикл или дефлаграционное горение. В их камерах сгорания поддерживается постоянное давление, при котором происходит медленное горение топлива. Двигатель на дефлаграционных принципах не нуждается в особо прочных агрегатах, однако ограничен в максимальных показателях. Повышение основных характеристик, начиная с определенного уровня, оказывается неоправданно сложным.

Альтернатива двигателю с изобарическим циклом в контексте повышения характеристик – система с т.н. детонационным горением. В таком случае реакция окисления горючего происходит за ударной волной, с высокой скоростью перемещающейся по камере сгорания. Это предъявляет особые требования к конструкции двигателя, но при этом дает очевидные преимущества. С точки зрения эффективности сгорания топлива детонационное горение на 25% лучше дефлаграционного. Также отличается от горения с постоянным давлением увеличенной мощностью тепловыделения с единицы площади поверхности фронта реакции. В теории, возможно повышение этого параметра на три-четыре порядка. Как следствие, скорость реактивных газов можно увеличить в 20-25 раз.

Таким образом, детонационный двигатель, отличаясь повышенным коэффициентом полезного действия, способен развивать большую тягу при меньшем расходе топлива. Его преимущества перед традиционными конструкциями очевидны, однако до недавнего времени прогресс в этой области оставлял желать лучшего. Принципы детонационного реактивного двигателя были сформулированы еще в 1940 году советским физиком Я.Б. Зельдовичем, но готовые изделия подобного рода все еще не дошли до эксплуатации. Главные причины отсутствия реальных успехов – проблемы с созданием достаточно прочной конструкции, а также сложность запуска и последующего поддержания ударной волны при применении существующих топлив.

Один из последних отечественных проектов в области детонационных ракетных двигателей стартовал в 2014 году и разрабатывается в НПО «Энергомаш» им. академика В.П. Глушко. Согласно доступным данным, целью проекта с шифром «Ифрит» являлось изучение основных принципов новой техники с последующим созданием жидкостного ракетного двигателя, использующего керосин и газообразный кислород. В основу нового двигателя, названного по имени огненных демонов из арабского фольклора, укладывался принцип спинового детонационного горения. Таким образом, в соответствии с основной идеей проекта, ударная волна должна непрерывно перемещаться по кругу внутри камеры сгорания.

Головным разработчиком нового проекта стало НПО «Энергомаш», а точнее созданная на его базе специальная лаборатория. Кроме того, к работам привлекли несколько других научно-исследовательских и проектных организаций. Программа получила поддержку Фонда перспективных исследований. Совместными усилиями все участники проекта «Ифрит» смогли сформировать оптимальный облик перспективного двигателя, а также создать модельную камеру сгорания с новыми принципами работы.

Для изучения перспектив всего направления и новых идей несколько лет назад была построена т.н. модельная детонационная камера сгорания, соответствующая требованиям проекта. Такой опытный двигатель с сокращенной комплектацией должен был использовать в качестве горючего жидкий керосин. В качестве окислителя предлагался газообразный кислород. В августе 2016 года начались испытания опытной камеры. Важно, что впервые в истории проект подобного рода удалось довести до стадии стендовых проверок. Ранее отечественные и зарубежные детонационные ракетные двигатели разрабатывались, но не испытывались.

В ходе испытаний модельного образца удалось получить весьма интересные результаты, показывающие правильность использованных подходов. Так, за счет использования правильных материалов и технологий получилось довести давление внутри камеры сгорания до 40 атмосфер. Тяга опытного изделия достигла 2 т.


Модельная камера на испытательном стенде

В рамках проекта «Ифрит» были получены определенные результаты, но отечественный детонационный двигатель на жидком топливе пока еще далек от полноценного практического применения. Перед внедрением такого оборудования в новые проекты техники конструкторам и ученым предстоит решить целый ряд самых серьезных задач. Только после этого ракетно-космическая отрасль или оборонная промышленность смогут приступить к реализации потенциала новой техники на практике.

В середине января «Российская газета» опубликовала интервью с главным конструктором НПО «Энергомаш» Петром Левочкиным, темой которого стало текущее положение дел и перспективы детонационных двигателей. Представитель предприятия-разработчика напомнил об основных положениях проекта, а также затронул тему достигнутых успехов. Кроме того, он рассказал о возможных сферах применения «Ифрита» и подобных ему конструкций.

К примеру, детонационные двигатели могут использоваться в гиперзвуковых летательных аппаратах. П. Левочкин напомнил, что двигатели, сейчас предлагаемые для применения на такой технике, используют дозвуковое горение. При гиперзвуковой скорости аппарата полета поступающий в двигатель воздух необходимо затормозить до звукового режима. Однако энергия торможения должна приводить к дополнительным тепловым нагрузкам на планер. В детонационных двигателях скорость горения топлива достигает, как минимум, М=2,5. Благодаря этому появляется возможность повысить скорость полета летательного аппарата. Подобная машина с двигателем детонационного типа сможет разгоняться до скоростей, в восемь раз превышающих скорость звука.

Впрочем, реальные перспективы ракетных двигателей детонационного типа пока не слишком велики. По словам П. Левочкина, мы «только приоткрыли дверь в область детонационного горения». Ученым и конструкторам предстоит изучить множество вопросов, и только после этого можно будет заниматься созданием конструкций с практическим потенциалом. Из-за этого космической отрасли еще долго предстоит использовать жидкостные двигатели традиционной конструкции, что, однако, не отменяет возможности их дальнейшего совершенствования.

Интересен тот факт, что детонационный принцип горения находит применение не только в сфере ракетных двигателей. Уже существует отечественный проект авиационной системы с камерой сгорания детонационного типа, работающей по импульсному принципу. Опытный образец такого рода был доведен до испытаний, и в будущем может дать старт новому направлению. Новые двигатели с детонационным горением могут найти применение в самых разных сферах и частично заменить газотурбинные или турбореактивные двигатели традиционных конструкций.

Отечественный проект детонационного авиационного двигателя разрабатывается в ОКБ им. А.М. Люльки. Информация об этом проекте впервые была представлена на прошлогоднем международном военно-техническом форуме «Армия-2017». На стенде предприятия-разработчика присутствовали материалы по различным двигателям, как серийным, так и находящимся на стадии разработки. Среди последних был перспективный детонационный образец.

Суть нового предложения заключается в применении нестандартной камеры сгорания, способной осуществлять импульсное детонационное горение топлива в воздушной атмосфере. При этом частота «взрывов» внутри двигателя должна достигать 15-20 кГц. В перспективе возможно дополнительное увеличение этого параметра, в результате чего шум двигателя уйдет за пределы диапазона, воспринимаемого человеческим ухом. Такие особенности двигателя могут представлять определенный интерес.


Первый запуск опытного изделия "Ифрит"

Однако главные преимущества новой силовой установки связаны с повышенными характеристиками. Стендовые испытания опытных изделий показали, что они примерно на 30% превосходят традиционные газотурбинные двигатели по удельным показателям. Ко времени первой публичной демонстрации материалов по двигателю ОКБ им. А.М. Люльки смогло получить и достаточно высокие эксплуатационные характеристики. Опытный двигатель нового типа смог без перерыва проработать 10 минут. Суммарная наработка этого изделия на стенде на тот момент превысила 100 часов.

Представители предприятия-разработчика указывали, что уже сейчас можно создать новый детонационный двигатель с тягой 2-2,5 т, пригодный для установки на легкие самолеты или беспилотные летательные аппараты. В конструкции такого двигателя предлагается использовать т.н. резонаторные устройства, отвечающие за правильный ход горения топлива. Важным преимуществом нового проекта является принципиальная возможность установки таких устройств в любом месте планера.

Специалисты ОКБ им. А.М. Люльки работают над авиационными двигателями с импульсным детонационным горением более трех десятилетий, но пока проект не выходит из научно-исследовательской стадии и не имеет реальных перспектив. Главная причина – отсутствие заказа и необходимого финансирования. Если проект получит необходимую поддержку, то уже в обозримом будущем может быть создан образец двигателя, пригодный для использования на различной технике.

К настоящему времени российские ученые и конструкторы успели показать весьма примечательные результаты в области реактивных двигателей, использующих новые принципы работы. Существует сразу несколько проектов, пригодных для применения в ракетно-космической и гиперзвуковой областях. Кроме того, новые двигатели могут применяться и в «традиционной» авиации. Некоторые проекты пока находятся на ранних стадиях и еще не готовы к проверкам и другим работам, тогда как в иных направлениях уже были получены самые примечательные результаты.

Исследуя тематику реактивных двигателей с детонационным горением, российские специалисты смогли создать стендовый модельный образец камеры сгорания с желаемыми характеристиками. Опытное изделие «Ифрит» уже прошло испытания, в ходе которых было собрано большое количество разнообразной информации. С помощью полученных данных развитие направления будет продолжаться.

Освоение нового направления и перевод идей в практически применимую форму займет немало времени, и по этой причине в обозримом будущем космические и армейские ракеты в обозримом будущем будут комплектоваться только традиционными жидкостными двигателями. Тем не менее, работы уже вышли из чисто теоретической стадии, и теперь каждый тестовый запуск опытного двигателя приближает момент строительства полноценных ракет с новыми силовыми установками.

По материалам сайтов:
http://engine.space/
http://fpi.gov.ru/
https://rg.ru/
https://utro.ru/
http://tass.ru/
http://svpressa.ru/

В связи с непонятками у народа по детонационным двигателям, решил малость поумничать простым языком, чисто от себя и даже без ссылок на авторитеты.


Детонационными называются двигатели в штатном режиме которых используются детонационное сгорание топлива. Сам двигатель может быть (теоретически) любым, - двс, реактивным, да хоть паровым. Теоретически. Однако, до настоящего времени все известные коммерчески приемлемые двигатели таких режимов сгорания топлива, в простонародье именуемого «взрывом», не использовали в силу их … м-м-м…. коммерческой неприемлемости..

Что дает применение детонационного сгорания в двигателях? Сильно упрощая и обобщая, примерно следующее:

1.Замена обычного горения детонационным за счет особенностей газодинамики фронта ударной волны, увеличивает теоретическую предельно достижимую полноту сгорания смеси, что позволяет повысить КПД двигателя, и снизить расход, примерно на 5-20%. Это актуально для всех типов двигателей, как ДВС, так и реактивных.

2. Скорость сгорания порции топливной смеси увеличивается примерно в 10-100 раз, значит теоретически можно для ДВС увеличить литровую мощность (или удельную тягу на килограмм массы для реактивных двигателей) примерно в такое же количество раз. Этот фактор актуален тоже для всех типов двигателей.

3. Фактор актуальный только для реактивных двигателей всех типов: так как процессы горения идут в камере сгорания на сверхзвуковых скоростях, а температуры и давления в камере сгорания возрастают в разы, то появляется отличная теоретическая возможность многократно увеличить и скорость истечения реактивной струи из сопла. Что в свою очередь ведет к пропорциональному росту тяги, удельного импульса, экономичности, и/или снижению массы двигателя и требуемого топлива.

Все эти три фактора очень важны, но носят не революционный, а так сказать эволюционный характер. Революционными являются четвертый и пятый фактор, и относятся они только к реактивным двигателям:

4. Только применение детонационных технологий позволяет создать прямоточный (а значит, - на атмосферном окислителе!) универсальный реактивный двигатель приемлемой массы, размеров и тяги, для практического и широкомасштабного освоения диапазона до-, сверх-, и гиперзвуковых скоростей 0-20Мах.

5.Только детонационные технологии позволяют выжать из химических ракетных двигателей (на паре топливо-окислитель) скоростные параметры требуемые для их широкого применения в межпланетных перелетах.

П.4 и 5. теоретически открывают нам а) дешевую дорогу в ближний космос, и б)дорогу к пилотируемым пускам к ближайшим планетам, без необходимости делать монструозные сверхтяжелые ракетоносители массой over 3500 tonnes.

Недостатки детонационных двигателей вытекают из их достоинств:

1. Скорость горения настолько высока, что чаще всего эти двигатели удается заставить работают лишь циклически: впуск-горение-выпуск. Что как минимум втрое снижает максимально достижимую литровую мощность и/или тягу, иногда лишая смысла саму затею.

2. Температура, давление и скорости их нарастания в камере сгорания детонационных двигателей таковы, что исключают прямое применение большинства известных нам материалов. Все они слишком слабы для построения простого, дешевого и эффективного двигателя. Требуется либо целое семейство принципиально новых материалов, либо применение пока неотработанных конструкторских ухищрений. Материалов у нас нет, а усложнение конструкции опять таки часто лишает смысла всю затею.

Однако есть область в которой без детонационных двигателей не обойтись. Это экономически оправданный атмосферный гиперзвук с диапазоном скоростей 2-20 Max. Поэтому битва идет по трем направлениям:

1. Создание схемы двигателя с непрерывной детонацией в камере сгорания. Что требует суперкомпьютеров и нетривиальных теоретических подходов для расчета их гемодинамики. В этой области проклятые ватники как всегда вырвались вперед, и впервые в мире теоретически показали, что непрерывная детогация вообще возможна. Изобретение, открытие, патент, - все дела. И приступили к изготовлению практической конструкции из ржавых труб и керосина.

2. Создание конструктивных решений делающих возможными применение классических материалов. Проклятые ватники с пьяными медведями и тут первыми придумали и сделали лабораторный многокамерный двигатель, который уже работает сколь угодно долго. Тяга как у двигателя Су27, а вес такой, что его в руках держит 1 (один!) дедушка. Но так как водка была паленая, то двигатель получился пока пульсирующий. Зато, сволочь работает настолько чисто, что его можно включать даже на кухне (где ватники его собственно и запилили в промежутках между водкой и балалайкой)

3. Создание суперматериалов для будущих двигателей. Эта область наиболее тугая и наиболее секретная. О прорывах в ней информации я не имею.

Исходя из вышеозвученного рассмотрим перспективы детонационного, поршневого ДВС. Как известно, нарастание давления в камере сгорания классических размеров, при детонации в ДВС происходит быстрее скорости звука. Оставаясь в том же конструктиве, не существует способа заставить механический поршень, да ещё со значительными связанными массами, двигаться в цилиндре с примерно такими же скоростями. ГРМ классической компоновки тоже не может работать на таких скоростях. Поэтому прямая переделка классического ДВС на детонационный с практической точки зрения бессмысленна. Нужно заново разработать двигатель. Но как только мы этим начинаем заниматься, то оказывается что поршень в этой конструкции просто лишняя деталь. Поэтому ИМХО, поршневой детонационный ДВС - это анахронизм.



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»