Неисправности системы зажигания инжекторного и дизельного двигателя, принцип работы. Система зажигания автомобиля: предназначения, устройство, принцип работы

Подписаться
Вступай в сообщество «lenruo.ru»!
ВКонтакте:

Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах бензиновых двигателей. Основными требованиями к системе зажигания являются:

  • Обеспечение искры в нужном цилиндре (находящемся в такте сжатия) в соответствии с порядком работы цилиндров.
  • Своевременность момента зажигания. Искра должна происходить в определенный момент (момент зажигания) в соответствии с оптимальным при текущих условиях работы двигателя углом опережения зажигания, который зависит, прежде всего, от оборотов двигателя и нагрузки на двигатель.
  • Достаточная энергия искры. Количество энергии, необходимой для надежного воспламенения рабочей смеси, зависит от состава, плотности и температуры рабочей смеси.
  • Общим требованием для системы зажигания является ее надежность (обеспечение непрерывности искрообразования).

Неисправность системы зажигания вызывает неполадки как при запуске, так и при работе двигателя:

  • трудность или невозможность запуска двигателя;
  • неравномерность работы двигателя — «троение» или прекращение работы двигателя при пропусках искрообразования в одном или нескольких цилиндрах;
  • детонация, связанная с неверным моментом зажигания и вызывающая быстрый износ двигателя;
  • нарушение работы других электронных систем за счет высокого уровня электромагнитных помех и пр.

Существует множество типов систем зажигания, отличающихся и устройством и принципами действия. В основном системы зажигания различаются по:
а) системе определения момента зажигания.
б) системе распределения высоковольтной энергии по цилиндрам.

При анализе работы систем зажигания исследуются основные параметры искрообразования, смысл которых практически не отличается в различных системах зажигания:

  • угол замкнутого состояния контактов (УЗСК, Dwell angle) — угол, на который успевает повернуться коленчатый вал от момента начала накопления энергии (конкретно в контактной системе — момента замыкания контактов прерывателя; в других системах — момента срабатывания силового транзисторного ключа) до момента возникновения искры (конкретно в контактной системе — момента размыкания контактов прерывателя). Хотя в прямом смысле данный термин можно применить только к контактной системе — он условно применяется для систем зажигания любых типов.
  • угол опережения зажигания (УОЗ, Advance angle) — угол, на который успевает повернуться коленчатый вал от момента возникновения искры до момента достижения соответствующим цилиндром верхней мертвой точки (ВМТ). Одна из основных задач системы зажигания любого типа — обеспечение оптимального угла опережения зажигания (фактически — оптимального момента зажигания). Оптимально поджигать смесь до подхода поршня к верхней мертвой точке в такте сжатия — чтобы после достижения поршнем ВМТ газы успели набрать максимальное давление и совершить максимальную полезную работу на такте рабочего хода. Также любая система зажигания обеспечивает взаимосвязь угла опережения зажигания с оборотами двигателя и нагрузкой на двигатель. При увеличении оборотов, скорость движения поршней увеличивается, при этом время сгорания смеси практически не изменяется — поэтому момент зажигания должен наступать чуть раньше — соответственно при увеличении оборотов, УОЗ надо увеличивать.
    На одной и той же частоте вращения коленчатого вала двигателя, положение дроссельной заслонки (педали газа) может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава. А скорость сгорания рабочей смеси как раз и зависит от ее состава. При полностью открытой дроссельной заслонке (педаль газа «в полу») смесь сгорает быстрее и поджигать ее нужно позже — соответственно при увеличении нагрузки на двигатель, УОЗ надо уменьшать. И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает, поэтому угол опережения зажигания должен быть увеличен.
  • напряжение пробоя — напряжение во вторичной цепи в момент образования искры — фактически — максимальное напряжение во вторичной цепи.
  • напряжение горения — условно-установившееся напряжение во вторичной цепи в течение периода горения искры.
  • время горения — длительность периода горения искры.

Обобщенно структуру системы зажигания можно представить следующим образом:

Рассмотрим подробнее каждый из элементов системы:

1. Источник питания для системы зажигания — бортовая сеть автомобиля и ее источники питания — аккумуляторная батарея (АКБ) и генератор.

2. Выключатель зажигания.

3. Устройство управления накоплением энергии — определяет момент начала накопления энергии и момент «сброса» энергии на свечу (момент зажигания). В зависимости от устройства системы зажигания на конкретном авто может представлять из себя:

Механический прерыватель, непосредственно управляющий накопителем энергии (первичной цепью катушки зажигания). Данный компонент нужен для того, чтобы замыкать и размыкать питание первичной обмотки катушки зажигания. Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.Параллельно контактам включен конденсатор (condenser). Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Но это только половина полезной работы конденсатора — когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения. При выходе конденсатора из строя двигатель нормально работать не будет — напряжение во вторичной цепи получится недостаточно большим для стабильного искрообразования.Прерыватель располагается в одном корпусе с распределителем высокого напряжения — поэтому распределитель зажигания в такой системе называют прерывателем-распределителем. Такая система зажигания называется классической системой зажигания.Общая схема классической системы:

Устройство катушки зажигания в системе COP (с интегрированным воспламенителем):

Система статического синхронного зажигания с двухвыводными катушками зажигания (одна катушка на две свечи) — DFS (нем. Doppel Funken Spule) система. Кроме систем, с индивидуальными катушками, используются и системы, где одна катушка обеспечивает высоковольтный разряд на двух свечах одновременно. При этом получается, что в одном из цилиндров, который находится в такте сжатия, катушка дает «рабочую искру», а в сопряженном с ним, который находится в такте выпуска) дает «холостую искру» (поэтому такая система часто называется системой зажигания с холостой искрой — «wasted spark»). Например, в 6-цилиндровом V-образном двигателе на цилиндрах 1 и 4 поршни занимают одно и то же положение (оба находятся в верхней и нижней мертвой точке одновременно) и движутся в унисон, но находятся на разных тактах. Когда цилиндр 1 находится на компрессионном ходу, цилиндр 4 — на такте выпуска, и наоборот.


Высокое напряжение, вырабатываемое во вторичной обмотке, подается напрямую на каждую свечу зажигания. В одной из свечей зажигания искра проходит от центрального электрода к боковому электроду, а в другой свече искра проходит от бокового к центральному электроду:

Напряжение, необходимое для образования искры, определяется искровым промежутком и давлением сжатия. Если искровой промежуток между свечами обоих цилиндров равен, для разряда необходимо напряжение, пропорциональное давлению в цилиндре. Вырабатываемое высокое напряжение разделяется в соответствии с относительным давлением цилиндров. Цилиндр на ходу сжатия требует и использует больший разряд напряжения, чем на ходу выпуска. Это происходит потому, что цилиндр на ходу выпуска находится примерно под атмосферным давлением, поэтому расход энергии гораздо ниже.

По сравнению с системой зажигания с распределителем, общий расход энергии в системе без распределителя практически такой же. В системе зажигания без распределителя потеря энергии от искрового промежутка между ротором распределителя и клеммой колпачка заменяется потерей энергии на холостую искру в цилиндре на ходу выпуска.

Катушки зажигания в системе DFS могут устанавливаться как отдельно от свечей и связываться с ними высоковольтными проводами (как в системе EFS), так и прямо на свечах (как в системе COP, но в этом случае высоковольтные провода все равно используются для передачи разряда на свечи смежных цилиндров — условно такую систему можно назвать «DFS-COP»).


Общая схема системы «DFS-COP»
Варианты системы «DFS-COP»

Также в этой системе коммутаторы могут быть объединены с соответствующими катушками — вот как выглядит такой вариант на примере Mitsubishi Outlander:

6. Высоковольтные провода — соединяют накопитель энергии c распределителем или свечами и распределитель со свечами. В системах зажигания COP отсутствуют.

7. Свечи зажигания (spark plug) — необходимы для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя. Свечи устанавливаются в головке цилиндра. Когда импульс тока высокого напряжения попадает на свечу зажигания, между ее электродами проскакивает искра — именно она воспламеняет рабочую смесь. Как правило, устанавливается по одной свече на цилиндр. Однако, бывают и более сложные системы с двумя свечами на цилиндр, причем не всегда свечи срабатывают одновременно (например, на Honda Civic Hybrid используется система DSI — Dual Sequential Ignition — при малых оборотах две свечи одного цилиндра срабатывают последовательно — сначала та из них, что ближе к впускному клапану, а затем вторая — чтобы топливовоздушная смесь сгорала быстрее и полнее).

Любая система зажигания четко делится на две части:

  • низковольтную (первичную, англ. primary) цепь — включает первичную обмотку катушки зажигания и непосредственно связанные с ней цепи (прерывателя, коммутатора и других компонентов в зависимости от устройства конкретной системы).
  • высоковольтную (вторичную, англ. secondary) цепь — включает вторичную обмотку катушки зажигания, систему распределения высоковольтной энергии, высоковольтные провода, свечи.

Учитывая все возможные модификации и комбинации приведенных Выше элементов, на автомобилях используются не менее 15-20 разновидностей систем зажигания.

Автомобили используются для достаточно быстрого транспортирования пассажиров и грузов в определенные пункты назначения. Без автомобиля очень сложно представить работу любого предприятия или завода. Главным элементом является двигатель, ему, в свою очередь, для нормальной работы нужна система зажигания, которая должна быть исправной и по своим характеристикам подходить данной силовой установке машины.

Система зажигания

Система зажигания автомобиля - это достаточно сложная совокупность приборов, отвечающая за появление искры в тот момент, который соответствует режиму работы силовой установки. Данная система является частью электрооборудования. Самые первые двигатели, такие как агрегат Даймлера, в качестве системы для зажигания применяли калильную головку - это первое устройство системы зажигания, которое не лишено было недостатков. Их суть заключалась в том, что воспламенение осуществлялось в самом конце такта, так как камера раскалялась до достаточно высокой температуры. Перед стартом всегда нужно было прогреть саму калильную головку и только потом запускать двигатель. В дальнейшем головка разогревалась за счет поддержания температуры от сгораемого топлива. В современных условиях такой принцип системы зажигания может использоваться только в микродвигателях, применяемых в моделях авто и прочей техники, используемой ДВС. Такое исполнение позволяет уменьшить габаритные размеры, но при этом вся конструкция может быть дороже. В небольших моделях это малозаметно, а вот в полноразмерном автомобиле может очень сильно сказаться на цене. Во всех авто схема системы зажигания практически одинаковая. Некоторые отличия диктуются только видом исполнения.

Общая схема системы зажигания выглядит следующим образом.

Система, работающая с использованием принципа магнето

После калильной головки одной из первых систем зажигания были созданы устройства, которые работали на основе магнето. Главная идея такой установки - это генерация необходимого импульса для зажигания за счет прохождения возле неподвижной катушки небольшого магнитного поля от установленного постоянного магнита, который в свою очередь был связан с одной из вращающихся деталей мотора. Главным достоинством такой системы была максимальная простота конструкции и отсутствие необходимости устанавливать какие-либо элементы питания и батареи. Она всегда готова к работе.

В современном мире ее применяют в основном для двигателей, которые установлены на бензопилах, небольших бензиновых генераторах и другой похожей технике. Не лишена система и недостатков, главный из которых - очень высокая стоимость производства. Нужна была катушка, обладающая большим количеством витков очень тонкой проволоки. Магниты также должны быть высокого качества. Исходя из всех недостатков, от такой системы отказались, заменив на более простые и более надежные.

Виды систем

Для нормальной работы бензинового двигателя обязательно нужна система зажигания. Благодаря ей происходит воспламенение смеси в необходимый момент. Существует три вида систем:

  • бесконтактная;
  • электронная.

Все три вида отличаются по конструкции. Несмотря на это, принцип работы у них практически одинаковый.

Общее строение и устройство зажигания

Все системы зажигания, независимо от вида, состоят из пяти основных конструктивных элементов:

  • Источник питания. При запуске мотора машины источником необходимой энергии служит аккумулятор. После того как двигатель начал работать, эту функцию выполняет генератор.
  • Замок зажигания - специальное устройство, которое используется для передачи напряжения. Замок, он же - выключатель, бывает как механический, так и более современный - электрический.
  • Накопитель необходимой энергии. Данный элемент создан для накопления, а также преобразования энергии в достаточном количестве. В современных авто возможно использование двух видов накопителей: индукционных либо емкостных. Индукционный - более распространён и имеет вид некой катушки зажигания. Преобразование осуществляется за счет прохождения тока через две обмотки этой катушки.
  • Свеча . Непосредственно рабочий элемент, который создает необходимую искру для воспламенения. Представляет собой небольшой фарфоровый изолятор, который накручен на резьбу, и имеет два электрода, которые располагаются на небольшом расстоянии друг от друга. При прохождении тока между контактами за счет малого расстояния создается искра.
  • Система, применяемая для распределения зажигания. Главное предназначение - это снабжение в нужный момент свечей зажигания энергией. Состоит из некоего распределителя (либо коммутатора) и отдельного блока для его управления. Вид распределителя зависит от выбранной системы, он может быть либо электронным, либо механическим, который использует для своей работы вращающийся бегунок.

Контактный тип зажигания

Самая распространенная схема - система зажигания «Газ», используемая для воспламенения топливной смеси, более известная как прерывательно-распределительная система. Данное устройство создает искру очень высокого вольтажа, до 30 тысяч В, на контактах свечей. Для того чтобы это выполнить, свечи соединяются с катушкой, благодаря которой и происходит образование необходимого напряжения. Сигнал на катушку подается при помощи специальных проводов, обладающих необходимыми характеристиками. При размыкании контактной группы при помощи специального кулачка как раз и происходит создание искры.

Стоит отметить, что момент ее возникновения должен четко соответствовать специальному положению поршней. Это достигается в результате установки четко рассчитанного распределителя, который передает вращательное движение на специальный прерыватель-распределитель. Главным недостатком такой системы является присутствие механического износа, и как результат - изменяется время создания искры, а также ее качество. Если искра не будет подаваться своевременно, это повлияет на правильную работу двигателя, а значит, потребуется довольно частое вмешательство в его работу и регулировку.

Несмотря на это, контактно-транзисторная система зажигания используется и по сегодняшний день. Такая система воспламенения горючей смеси популярна благодаря отличным характеристикам и высокими показателями надежности работы.

Бесконтактное зажигание

Бесконтактная система зажигания - это более сложная система, которая напрямую зависит только от размыкания специальных контактов. Самую главную роль в ее работе играет коммутатор, который создан на основе транзисторного типа работы. Для нормальной подачи искры применяется еще и отдельный датчик. Эта система хороша тем, что отсутствует некая зависимость от уровня качества выполнения поверхности контактов и может быть гарантировано более высокого качества искрообразование. Но и этот тип системы зажигания использует распределитель, который необходим для передачи на нужную свечу определенного количества тока. Внешне система чем-то похожа на контактную схему зажигания.

Передача тока необходимой величины осуществляется за счет использования специальных высоковольтных проводов.

Достоинства бесконтактного устройства зажигания

По сравнению с контактной, данная схема обладает рядом своих преимуществ:

  • Не обгорают контакты на прерывателе, а также они не подвержены загрязнению. Отсутствует необходимость очень долго выбирать и устанавливать момент, когда будет выполняться подача тока. Нет надобности контролировать или регулировать положение контактов, а также их угол замыкания и размыкания, все потому, что бесконтактная система зажигания исключает присутствие механических контактов в системе. В итоге двигатель не теряет своей мощности.
  • Благодаря тому, что отсутствует размыкание контактов посредством специального кулачка, также нет вибрации и биения ротора внутри распределителя - не нарушается равномерность подачи искры на каждую свечу зажигания.
  • Обеспечивается уверенный запуск даже холодного двигателя, несмотря на температуру окружающей среды.

Электронное зажигание

Данная система исключает использование движущихся механических деталей. Достигается это благодаря применению специальных датчиков и блока управления. Создание искры, а также момент ее подачи на определенную свечу осуществляются более точно, чем в системах, которые используют механические распределители. В сумме это дает хорошую возможность улучшить работу силовой установки автомобиля, а также существенно увеличить мощность, не увеличивая расхода топлива. Система отличается очень высокой надежностью и качеством исполнения поставленных задач. Такая электронная система зажигания используется на многих современных автомобилях, благодаря высокой надежности и отличным рабочим параметрам.

Микропроцессорный вид зажигания

Микропроцессорная система зажигания - это одна из разновидностей электронного зажигания. Используется для создания некой зависимости опережения зажигания в установках с карбюраторной системой питания от давления воздуха в коллекторе, а также от частоты вращения в двигателе коленчатого вала.

Микропроцессорная электронная система зажигания обладает очень большим количеством достоинств по сравнению со стандартной комплектацией автомобилей с карбюраторной системой питания.

Существенно уменьшается уровень расхода. Это происходит благодаря оптимизации сгорания подаваемой смеси.

Улучшаются все динамические характеристики автомобиля.

Улучшается работа двигателя, переходы между передачами становятся более плавными. Нет потерь мощности на низких оборотах.

Микропроцессорная система зажигания подразумевает установку ГБО, в результате этого и происходит экономия топлива, а также уменьшается стоимость каждого километра пути.

Есть возможность установки дополнительного переключателя для смены режимов. К примеру, между видами топлива.

Сегодня система зажигания ВАЗ позволяет установить данную схему для улучшения всех динамических показателей. Такая возможность снова возвращает ВАЗ в строй актуальных автомобилей, благодаря низкой цене, но при этом с неплохими скоростными характеристиками.

Основные этапы в работе зажигания

Существует несколько самых основных этапов при работе системы зажигания, они не зависят от вида и конструкционного исполнения:

Накопление и подача необходимого уровня заряда.

Специальное высоковольтное преобразование.

Этап распределения.

Образование искры при помощи свечей.

Воспламенение топливной смеси.

На каждом из этапов необходима максимально точная и слаженная работа всех элементов. В таком случае лучше выбирать наиболее надежные и давно проверенные системы. По статистике, лучшей считается электронная система зажигания двигателя, благодаря отсутствию механических узлов.

Свечи зажигания

Ни одна система зажигания не способна работать без главного элемента - свечи. Данная деталь способна преобразовать импульсы, получаемые от высокого напряжения, в специальный искровой заряд для воспламенения паров топлива в камере сгорания. Для хорошей работы свечи уровень температуры ее нижнего изолятора должен быть в районе 500-600 градусов. Стоит отметить, что при температуре в 500 градусов может быть отложение нагара на поверхности изолятора. Как результат - перебои в работе, плохая передача искры. При температуре 600 градусов возможно так называемое калильное зажигание - это преждевременное зажигание смеси за счет высокой температуры изолятора.

При выборе свечей руководствуются так называемым калильным числом, величина которого изначально устанавливается заводом-изготовителем. Чем больше калильное числ, тем меньше свеча подвержена нагреванию, ее еще называют более холодной свечой.

Проверка состояния и исправности зажигания

Время от времени система зажигания автомобиля для нормальной работы требует проверки целостности и слаженности элементов системы воспламенения. Только правильный подход обеспечит долговечность и надежность работы двигателя. В частности, проверяют следующие параметры:

Опережение зажигания и его угол. При необходимости производится регулировка и установка стандартного значения для данного автомобиля.

Проверка цепей напряжения. Для этого снимаются провода высокого напряжения и при помощи специального тестера проверяется их пропускная способность и наличие пробоя.

Для того чтобы получить максимально точную информацию о состоянии цепей зажигания, а также обо всех процессах, протекающих внутри, применяют специализированные стенды, оборудованные осциллографами. Благодаря этому можно получить максимально точное значение и очень быстро определить уровень работоспособности систем. Все эти действия нужны, чтобы определить неисправности системы зажигания. На начальном этапе можно обойтись минимальными потерями, к примеру, заменой проводов. При этом сохраняется работоспособность двигателя, что очень важно, так как его ремонт стоит гораздо больше, чем замена одного из элементов системы зажигания.

Наиболее характерные неисправности зажигания

Неисправности системы зажигания могут повлечь за собой выход из строя и остальных устройств, используемых для нормальной работы машины. Выделяют отдельный список часто встречаемых неисправностей, при которых затрудняется работа системы воспламенения рабочей смеси:

Возможны замыкания первичной обмотки катушки зажигания на массу, а также замыкание вторичной на первичную. В результате происходит перегорание дополнительного резистора и появляются характерные трещины в изоляторе, а также в крышке катушки. В этом случае необходима замена поврежденных элементов, если же катушка практически разрушена - то замена всего узла.

Характерные неисправности прерывателя: возможно обгорание либо загрязнение маслом контактов внутри прерывателя; нарушение стандартного зазора между контактами, что приводит к перебоям в переключении между свечами.

Обгорание либо замасливание контактов может вызвать очень резкое увеличение уровня сопротивления между ними, из-за этого уменьшается ток, создаваемый в первичной обмотке, и как результат - снижается мощность искры, которую создают свечи.

Нарушение зазора также приводит к ухудшению образованию искры, которая создается между электродами свечи. Как результат - перебои в нормальной работе двигателя.

Свечи: возможно появление нагара на внутренней поверхности, а также обильное загрязнение снаружи. Нарушение зазора между электродами, различные трещины в изоляторе, неисправность бокового электрода - все это приводит к плохой подаче искры либо вовсе ее отсутствию. Это вызывает нестабильную, неравномерную и неустойчивую работу мотора, снижает его мощность. Возможна и остановка при повышении нагрузки.

Нормальная работа свечей зажигания возможна только в случае, если:

Поверхность резьбы сухая (ни в коем случае не мокрая);

Присутствует очень тонкий слой нагара либо копоти;

Цвет электродов, а также изолятора должен быть от светло-коричневого до светло-серого, почти белого.

Обо всех неисправностях может рассказать мокрая поверхность резьбы - это может быть как бензин, так и масло. У неисправной свечи электроды и часть изолятора покрыты толстым слоем нагара и мокрые.

Замасленные свечи и другие признаки неисправности

Если двигатель обладает очень большим пробегом, и при этом все свечи были заменены в одно и то же время, то главной виной такого состояния является повышенный износ цилиндров, колец или поршней. Возможно появление масла на поверхности свечи в период, когда автомобиль проходит обкатку. Это со временем проходит. Если же масло было обнаружено только на одной свече, то причиной этого, скорее всего, может быть неисправность выпускного клапана, он может прогореть. Чтобы это определить, нужно хорошо прислушаться к работе двигателя, на холостом ходу он работает неравномерно. В этом случае нельзя откладывать с проведением ремонтных работ, так как потом прогорит и седло, и ремонт будет еще дороже.

Выгоревшие либо очень сильно корродированные электроды говорят только о перегреве свечи. Такое возможно, если был использован низкооктановый бензин, либо была неправильная установка момента произведения зажигания. Слишком обедненная смесь - тоже результат оплавки электродов.

Возможны различные механические повреждения на поверхности свечи. Она может иметь изогнутый вид, или же будет деформирован электрод, расположенный в боковой части свечи. Последствия такой работы - перебои в зажигании. Причиной возникновения таких неприятностей может быть неправильно выбранная длина свечи, либо же длина резьбы не соответствует посадочному месту в головке мотора. В таком случае стоит подобрать стандартную свечу, рекомендуемую заводом-изготовителем. Если ее длина была выбрана правильно, стоит обратить внимание на присутствие посторонних механических элементов во внутренней части цилиндра.

После того как свечи были поменяны местами, можно узнать очень большое количество информации об их состоянии. Если свеча продолжает покрываться нагаром уже в другом цилиндре - это говорит о её неисправности. Но если нормальная и исправная свеча одного из соседних цилиндров также начинает покрываться нагаром, как и её предшественница, тогда это неисправность непосредственно в кривошипно-шатунном устройстве этого цилиндра.

Выводы

Все системы, используемые для воспламенения топливной смеси, хороши в определенных областях машиностроения. Все не лишены своих недостатков. Не всегда нужно создавать сложную и высоконадежную систему, иногда гораздо дешевле использовать простые и более дешевые. Нет необходимости устанавливать дорогую систему зажигания на автомобиль, который по своей стоимости гораздо ниже, чем остальные в его классе. Такими действиями можно только поднять его стоимость, но качество, к сожалению, останется прежним. Зачем что-то менять, если работа системы зажигания показала только лучшие результаты на многих тестах?

Основным назначением системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый . Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы, подаются на блок управления погружным топливным насосом.

Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания , импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания , управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания - это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.

Устройство системы зажигания

Схема системы зажигания: 1 - замок зажигания; 2 - катушка зажигания; 3 - распределитель, 4 - свечи зажигания; 5 - прерыватель, 6 - масса.

Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:

  1. Источник питания для системы зажигания, это (в момент запуска двигателя), и (во время работы двигателя).
  2. Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле .
  3. Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.
    1. Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.
    2. Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания
  4. Свечи зажигания , представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба.
  5. Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания .
    1. Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.
    2. Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.
    3. Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.
  6. Высоковольтный провод - это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.

Принцип работы системы зажигания

Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы . Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.

Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.

Система зажигания авто предопределена для создания искрового разряда, распределения его по свечам зажигания и все это в подходящий момент работы мотора. В определенных моделях авто импульсы системы поступают на блок управления с помощью погружного топливного насоса. В дизельных моторах зажигание случается во время впрыска топливной смеси при такте сжатия.

Система зажигания бывает трех типов:

  • Контактная. Появление импульсов осуществляется в тот миг, когда контакты находятся в стадии разрыва.
  • Бесконтактная. Появлению импульсов способствует коммутатор (генератор импульсов).
  • Микропроцессорная. Механизм представляет собой электронный прибор, управляющий моментом воспламенения искры, а также и другими системами транспортного средства.

В двухтактных силовых агрегатах, для работы которых не нужен внешний источник питания, устанавливают системы от магнето. Магнето – это самостоятельное устройство, которое объединяет источник тока и катушку зажигания.

Все эти системы используют единый принцип для своей работы, а отличаются лишь методом образования управляющего импульса.

Строение системы зажигания:

  1. Источник питания. Во время запуска двигателя машины источником питания служит аккумулятор, а во время его эксплуатации – генератор авто.
  2. Замок зажигания — приспособление, благодаря которому осуществляется передача напряжения. Выключатель (замок зажигания) есть механический либо электрический.
  3. Накопитель энергии. Это устройство, главная роль которого в накоплении и преобразовании энергии в достаточном количестве для образования разряда меж электродами свечки зажигания. В устройстве современных автомобилей применяются такие накопители: емкостные, индуктивные. Первый вид накопителя представлен в виде емкости, использующей высокое напряжение для накапливания заряда, который в виде энергии поступает в определенное время на свечку. Второй вид накопителя, то есть накопитель индуктивный имеет вид катушки зажигания. Сначала первичная обмотка подсоединяется к плюсовому полюсу, а через прибор разрыва – к минусовому. Работающее устройство разрыва способствует появлению напряжения самоиндукции в обмотке. Относительно вторичной обмотки, то в ней появляется напряжение в количестве достаточном для того чтобы пробить воздушный зазор свечки.
  4. Свечки зажигания. Каждая свеча – это приспособление в виде изолятора из фарфора, накрученного на металлическую резьбу и имеющего два электрода, расположенные в интервале от 0,15 до 0,25 мм один от другого. Первым электродом является центральный проводник, а вторым – резьба металлическая.

  1. Система распределения зажигания. Предназначение системы – снабжение в необходимое мгновение энергией свечки зажигания. Она состоит из: распределителя (коммутатора), а также блока управления.

Распределитель зажигания – это приспособление, распределяющее высокое напряжение по электропроводам, подсоединенным к свечкам цилиндра. Этот процесс может иметь статическую или механическую природу. Статический распределитель не имеет в своей конструкции вращающихся деталей. В этом случае катушка зажигания прикрепляется прямо к свечке, а управление процессом осуществляется не чем иным как блоком управления зажиганием. Силовой агрегат, имеющий четыре цилиндра, будет иметь в своей конструкции и 4 катушки. Высоковольтные провода в этой системе не применяются. Что касается механического распределителя зажигания, то это устройство представлено в виде вала, запуск которого осуществляется при запуске двигателя, а распространение напряжения по проводам осуществляется с помощью специального «бегунка».

Коммутатор – это электронное приспособление, которое применяется для создания импульсов, приводящих в действие автотрансформатор (катушку).

Блок управления системой зажигания существует в виде микропроцессорного механизма, который устанавливает тот момент, когда нужно подать импульс в катушку. При этом учитываются показатели лямбда-зондов, коленвала, распредвала, температурные показатели.

Особенность функционирования

Система зажигания классическая функционирует следующим образом. Кулачки, активировавшиеся с помощью обращения вала привода трамблера, создают «разрыв», передаваемый на первичную обмотку авторансформатора заряд в размере 12 вольт. После исчезновения напряжения в обмотке образовывается ЭДС самоиндукции, а в обмотке вторичной зарождается напряжение в размере около 30 тысяч вольт. Далее высокое напряжение появляется в распределителе, а потом расходится на свечки в том количестве, которое требуется во время периода работы силового агрегата. В этом случае такого напряжения вполне достаточно для того чтобы пробить искровым зарядом зазор воздуха между электродами свечек зажигания.

Для полного перегорания топлива необходим процесс опережения зажигания. Учитывая то, что топливная смесь перегорает не сразу, ее нужно зажечь немного заранее. Миг подачи искры должен быть четко отрегулирован, ведь в случае несвоевременного зажигания может иметь место потеря мощности двигателя, повышенная детонация.

Система зажигания

Систему зажигания, которая обеспечивает работу двигателя, придется рассмотреть в этом разделе, хотя она и является составной частью "Электрооборудования автомобиля".

Когда мы изучали рабочий цикл двигателя, было отмечено, что в самом конце такта сжатия рабочую смесь необходимо поджечь. Это означает, что между электродами свечи зажигания в этот момент должна проскочить высоковольтная искра.

Система зажигания предназначена для создания тока высокого напряжения и распределения его по свечам цилиндров. Импульс тока высокого напряжения подается на свечи в строго определенный момент времени, который меняется в зависимости от частоты вращения коленчатого вала и нагрузки на двигатель.

На автомобилях прежних лет выпуска устанавливалась контактная или бесконтактная система зажигания. В современном автомобиле с системой впрыска топлива система зажигания является частью комплексной электронной системы управления двигателем.

Контактная система зажигания

Источники электрического тока (аккумуляторная батарея и генератор, подробный разговор о которых будет в разделе "Электрооборудование автомобиля") вырабатывают ток низкого напряжения. Они "выдают" в бортовую электрическую сеть автомобиля 12–14 вольт. Для возникновения искры между электродами свечи на них необходимо подать 18–20 тысяч вольт! Поэтому в системе зажигания имеются две электрические цепи – низкого и высокого напряжения (рис. 21). Контактная система зажигания состоит из (рис. 21):

    катушки зажигания;

    прерывателя тока низкого напряжения;

    распределителя тока высокого напряжения;

    центробежного регулятора опережения зажигания;

    вакуумного регулятора опережения зажигания;

    свечей зажигания;

    проводов низкого и высокого напряжения;

    включателя зажигания.

Катушка зажигания (рис. 21)предназначена для преобразования тока низкого напряжения в ток высокого напряжения. Как и большинство приборов системы зажигания, она располагается в моторном отсеке автомобиля.

а) электрическая цепь низкого напряжения: 1 "масса" автомобиля; 2 – аккумуляторная батарея; 3 – контакты замка зажигания; 4 – катушка зажигания; 5 – первичная обмотка (низкого напряжения); 6 – конденсатор; 7 – подвижный контакт прерывателя; 8 – неподвижный контакт прерывателя; 9 – кулачок прерывателя; 10 – молоточек контактов

б) электрическая цепь высокого напряжения: 1 катушка зажигания; 2 – вторичная обмотка (высокого напряжения); 3 – высоковольтный провод катушки зажигания; 4 – крышка распределителя тока высокого напряжения; 5 – высоковольтные провода свечей зажигания; 6 – свечи зажигания; 7 – распределитель тока высокого напряжения ("бегунок"); 8 – резистор; 9 – центральный контакт распределителя; 10 – боковые контакты крышки

Рис. 21. Контактная система зажигания

Принцип работы катушки зажигания очень прост и знаком из школьного курса физики. Когда по обмотке низкого напряжения протекает электрический ток, вокруг нее создается магнитное поле. Если прервать ток в этой обмотке, то исчезающее магнитное поле индуцирует ток уже в другой обмотке (высокого напряжения).

За счет разницы в количестве витков обмоток катушки, из 12-ти вольт мы получаем необходимые нам 20 тысяч вольт! Цифра весьма впечатляющая, но это как раз то напряжение, которое в состоянии пробить воздушное пространство (около миллиметра) между электродами свечи зажигания.

Если кто из вас, испугавшись этой цифры, решил вообще не дотрагиваться до чего-либо электрического в машине, то напрасно.

"Убивает не напряжение, а ток" – известное выражение у электриков, как нельзя лучше подходит к ситуации с электричеством в автомобиле.

В системе зажигания очень малые токи, поэтому, если вы и дотронетесь до проводов или приборов системы, то будет лишь несколько "неприятно", но не более того. Да и произойдет это только, если вы стоите босиком (или в мокрой обуви) на сырой земле или если одна рука на "массе", а другая на тех самых 20000 В.

Прерыватель тока низкого напряжения (контакты прерывателя – рис. 21) нужен для того, чтобы размыкать ток в цепи низкого напряжения. При этом во вторичной обмотке катушки зажигания индуцируется ток высокого напряжения, который затем поступает на центральный контакт распределителя.

Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.

Параллельно контактам включен конденсатор, который необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного.

Но это только половина полезной работы конденсатора. Он еще участвует и в увеличении напряжения во вторичной обмотке катушки зажигания. Когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения.

"Зачем такой длинный разговор о такой маленькой штучке в такой большой машине?" – спросите вы.

Так вот учтите, при выходе конденсатора из строя двигатель работать не будет! Напряжение во вторичной цепи получится недостаточно большим для того, чтобы пробить воздушную преграду между электродами свечи зажигания. Может быть, иногда, слабая искорка и будет проскакивать, но нам нужна достаточно "горячая" и стабильная искра, которая гарантированно воспламенит рабочую смесь и обеспечит нормальный процесс ее сгорания. А для этого, как раз и необходимы те самые "страшные" 20 тысяч вольт, в "приготовлении" которых участвует и конденсатор тоже.

Прерыватель тока низкого напряжения и распределитель высокого напряжения расположены в одном корпусе и имеют привод от коленчатого вала двигателя.

Часто водители называют этот узел коротко – "прерыватель-распределитель" (или еще короче – "трамблер").

Крышка распределителя и распределитель (ротор) тока высокого напряжения (рис. 21 и 22) предназначены для распределения тока высокого напряжения по свечам цилиндров двигателя.

Рис. 22. Прерыватель-распределитель: 1 диафрагма вакуумного регулятора; 2 – корпус вакуумного регулятора; 3 – тяга; 4 – опорная пластина; 5 – ротор распределителя ("бегунок"); 6 – боковой контакт крышки; 7 – центральный контакт крышки; 8 – контактный уголек; 9 – резистор; 10 – наружный контакт пластины ротора; 11 – крышка распределителя; 12 – пластина центробежного регулятора; 13 – кулачок прерывателя; 14 – грузик; 15 – контактная группа; 16 – подвижная пластина прерывателя; 17 – винт крепления контактной группы; 18 – паз для регулировки зазоров в контактах; 19 – конденсатор; 20 – корпус прерывателя-распределителя; 21 – приводной валик; 22 – фильц для смазки кулачка

После того, как в катушке зажигания образовался ток высокого напряжения, он попадает (по высоковольтному проводу) на центральный контакт крышки распределителя, а затем через подпружиненный контактный уголек на пластину ротора.

Во время вращения ротора ток через небольшой воздушный зазор "соскакивает" с его пластины на боковые контакты крышки. Далее, через высоковольтные провода импульс тока высокого напряжения попадает к свечам зажигания.

Боковые контакты крышки распределителя пронумерованы и соединены высоковольтными проводами со свечами цилиндров в строго определенной последовательности.

Таким образом, устанавливается "порядок работы цилиндров", который выражается рядом цифр.

Как правило, для четырехцилиндровых двигателей применяется порядок работы: 1–3–4–2. Это означает, что после воспламенения рабочей смеси в первом цилиндре, следующий "взрыв" произойдет в третьем, потом в четвертом и, наконец, во втором цилиндре. Такой порядок работы цилиндров установлен для равномерного распределения нагрузки на коленчатый вал двигателя.

Подача высокого напряжения на электроды свечи зажигания должна происходить в конце такта сжатия, когда поршень не доходит до верхней мертвой точки примерно 4–6°, измеряя по углу поворота коленчатого вала. Этот угол называют углом опережения зажигания.

Необходимость опережения момента зажигания горючей смеси обусловлена тем, что поршень движется в цилиндре с огромной скоростью. Если смесь поджечь несколько позже, то расширяющиеся газы не будут успевать делать свою основную работу, то есть давить на поршень в должной степени. Хотя горючая смесь и сгорает в течение 0,001–0,002 секунды, поджигать ее надо до подхода поршня к верхней мертвой точке. Тогда в начале и середине рабочего хода поршень будет испытывать необходимое давление газов, а двигатель будет обладать той мощностью, которая требуется для движения автомобиля.

Первоначальный угол опережения зажигания выставляется и корректируется с помощью поворота корпуса прерывателя-распределителя. Тем самым мы выбираем момент размыкания контактов прерывателя, приближая их или, наоборот, удаляя от набегающего кулачка приводного валика прерывателя-распределителя.

В зависимости от режима работы двигателя, условия процесса сгорания рабочей смеси в цилиндрах постоянно меняются. Поэтому для обеспечения оптимальных условий необходимо постоянно менять и указанный выше угол (4–6°). Это обеспечивают центробежный и вакуумный регуляторы опережения зажигания.

Центробежный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от скорости вращения коленчатого вала двигателя.

При увеличении оборотов коленчатого вала двигателя поршни в цилиндрах увеличивают скорость своего возвратно-поступательного движения. В то же время скорость сгорания рабочей смеси остается практически неизменной. Следовательно, для обеспечения нормального рабочего процесса в цилиндре смесь необходимо поджигать чуть раньше. Для этого искра между электродами свечи должна проскочить раньше, а это возможно лишь в том случае, если контакты прерывателя тоже разомкнутся раньше. Это и должен обеспечить центробежный регулятор опережения зажигания (рис. 23).

а) расположение деталей регулятора: 1кулачок прерывателя; 2 – втулка кулачков; 3 – подвижная пластина; 4 – грузики; 5 – шипы грузиков; 6 – опорная пластина; 7 – приводной валик; 8 – стяжные пружины

б) грузики вместе

в) грузики разошлись

Рис. 23. Схема работы центробежного регулятора угла опережения зажигания

Центробежный регулятор опережения зажигания находится в корпусе прерывателя-распределителя (см. рис. 22 и 23). Он состоит из двух плоских металлических грузиков, каждый из которых одним из своих концов закреплен на опорной пластине, жестко соединенной с приводным валиком. Шипы грузиков входят в прорези подвижной пластины, на которой закреплена втулка кулачков прерывателя. Пластина с втулкой имеют возможность проворачиваться на небольшой угол относительно приводного валика прерывателя-распределителя.

По мере увеличения числа оборотов коленчатого вала двигателя, увеличивается и частота вращения валика прерывателя-распределителя. Грузики, подчиняясь центробежной силе, расходятся в стороны и сдвигают втулку кулачков прерывателя "в отрыв" от приводного валика, в результате чего набегающий кулачок поворачивается на некоторый угол по ходу вращения навстречу молоточку контактов. Контакты размыкаются раньше, угол опережения зажигания увеличивается.

При уменьшении скорости вращения приводного валика центробежная сила уменьшается, и под воздействием пружин грузики возвращаются на место – угол опережения зажигания уменьшается.

Вакуумный регулятор опережения зажигания предназначен для изменения момента возникновения искры между электродами свечей зажигания в зависимости от нагрузки на двигатель.

На одной и той же частоте вращения коленчатого вала двигателя положение дроссельной заслонки (педали "газа") может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава, а скорость сгорания рабочей смеси как раз и зависит от ее состава.

При полностью открытой дроссельной заслонке (педаль "газа" "в полу") смесь сгорает быстрее, и поджигать ее можно и нужно попозже. Следовательно, угол опережения зажигания надо уменьшать.

И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает. Значит, угол опережения зажигания должен быть увеличен.

Именно этим и занимается вакуумный регулятор опережения зажигания.

Вакуумный регулятор (рис. 24) крепится к корпусу прерывателя-распределителя (см. рис. 22). Корпус регулятора разделен диафрагмой на два объема. Один из них связан с атмосферой, а другой через соединительную трубку сообщается с полостью под дроссельной заслонкой. С помощью тяги диафрагма регулятора соединена с подвижной пластиной, на которой располагаются контакты прерывателя.

Рис. 24. Вакуумный регулятор угла опережения зажигания

При увеличении угла открытия дроссельной заслонки (увеличение нагрузки на двигатель) разряжение под ней уменьшается. В этом случае, под воздействием пружины диафрагма через тягу сдвигает пластину вместе с контактами на небольшой угол в сторону от набегающего кулачка прерывателя. Контакты будут размыкаться позже, угол опережения зажигания уменьшится.

И наоборот, угол увеличивается, когда вы прикрываете дроссельную заслонку (уменьшаете "газ"). Разрежение под заслонкой увеличивается, передается к диафрагме и она, преодолевая сопротивление пружины, тянет на себя пластину с контактами. Это означает, что кулачок прерывателя быстрее встретится с молоточком контактов и разомкнет контакты раньше. Таким образом мы увеличиваем угол опережения зажигания для плохо горящей рабочей смеси.

Свеча зажигания (рис. 25) необходима для образования искрового разряда и поджигания рабочей смеси в камере сгорания. Как вы помните, устанавливается свеча зажигания в головке цилиндра двигателя (см. рис. 6).

Рис. 25. Свеча зажигания: 1 контактная гайка; 2 – изолятор; 3 – корпус; 4 – уплотнительное кольцо; 5 – центральный электрод; 6 – боковой электрод

Когда импульс тока высокого напряжения от распределителя зажигания попадает на свечу, между ее электродами проскакивает искра. Именно эта "искорка" и воспламеняет рабочую смесь, обеспечивая тем самым нормальное прохождение рабочего цикла двигателя (см. рис. 8). Свеча зажигания маленькая, но очень важная деталь вашего двигателя.

В обычной жизни вы можете посмотреть на принцип работы свечи зажигания, поиграв с пьезо- или электрозажигалкой, которая используется на кухне. Искра, проскакивающая между электродами зажигалки, воспламеняет газ и обеспечивает рабочий "кухонный" процесс.

Высоковольтные провода служат для подачи тока высокого напряжения от катушки зажигания к распределителю и от него на свечи зажигания.

Основные неисправности контактной системы зажигания

Отсутствует искра между электродами свечей из-за обрыва или плохого контакта проводов в цепи низкого напряжения, обгорания контактов прерывателя или отсутствия зазора между ними, "пробоя" конденсатора. Искра может отсутствовать также при неисправности катушки зажигания, крышки распределителя, ротора, высоковольтных проводов или самой свечи.

Для устранения этой неисправности необходимо последовательно проверить цепи низкого и высокого напряжения. Зазор в контактах прерывателя следует отрегулировать, а неработоспособные элементы системы зажигания заменить.

Двигатель работает с перебоями и (или) не развивает полной мощности из-за неисправной свечи зажигания, нарушения величины зазора в контактах прерывателя или между электродами свечей, повреждения ротора или крышки распределителя, а также при неправильной установке начального угла опережения зажигания.

Для устранения неисправности необходимо восстановить нормальные зазоры в контактах прерывателя и между электродами свечей, выставить начальный угол опережения зажигания в соответствии с рекомендациями завода-изготовителя, а неисправные детали следует заменить.

Бесконтактная система зажигания

Преимущество бесконтактной системы зажигания заключается в возможности увеличения подаваемого напряжения на электроды свечи (увеличение "мощности" искры). Это означает, что улучшается процесс воспламенения рабочей смеси. Тем самым облегчается запуск холодного двигателя, повышается устойчивость его работы на всех режимах, что имеет особое значение для суровых зимних месяцев.

Немаловажным фактом является то, что при использовании бесконтактной системы зажигания двигатель становится более экономичным.

У бесконтактной системы, как и у контактной, есть цепи низкого и высокого напряжения.

Цепи высокого напряжения контактной и бесконтактной систем зажигания практически ничем не отличаются, но цепи низкого напряжения у них различны. В бесконтактной системе используются электронные устройства – коммутатор и датчик-распределитель (датчик Холла) (рис. 26).

а) схема электрической цепи низкого напряжения: 1 –аккумуляторная батарея; 2 – контакты замка зажигания; 3 – транзисторный коммутатор; 4 – датчик-распределитель (датчик Холла); 5 – катушка зажигания

б) схема электрических соединений коммутатора и датчика-распределителя

Рис. 26. Бесконтактная система зажигания

Бесконтактная система зажигания включает в себя следующие узлы:

    катушку зажигания;

    датчик-распределитель;

    коммутатор;

    свечи зажигания;

    провода высокого и низкого напряжения;

    выключатель зажигания.

В такой системе зажигания отсутствуют контакты прерывателя, а значит, нечему подгорать и нечего регулировать. Функцию контактов в этом случае выполняет бесконтактный датчик Холла, который посылает управляющие импульсы в электронный коммутатор. А коммутатор, в свою очередь, управляет катушкой зажигания, которая преобразует ток низкого напряжения в те самые "страшно большие" вольты.

Основные неисправности бесконтактной системы зажигания

Если "заглох" и не хочет заводиться двигатель с бесконтактной системой зажигания, то в первую очередь стоит проверить... подачу бензина. Может быть, к вашей радости, причина была именно в этом. Если с бензином все в порядке, а искры на свече нет, то у вас есть три варианта решения проблемы.

Начнем с третьего. Надо хлопнуть дверцей машины, сказать нехорошие слова и опоздать на работу, добираясь туда на общественном транспорте.

Первый вариант предполагает попытку проверить на практике мнение о том, что "электроника – это наука о контактах". Открываем капот и проверяем, зачищаем, подергиваем и подпихиваем на свои места все провода и проводочки, которые попадаются под руку. Если до этих судорожных движений где-то были ненадежные электрические соединения, то двигатель заведется. А если нет, то остается еще второй вариант.

Для возможности воплощения в жизнь второго варианта вам следует быть запасливым водителем. Из резерва необходимых вещей, которые вы возите с собой в машине, в первую очередь надо взять запасной коммутатор и заменить им прежний. Как правило, после этой процедуры двигатель оживает. Если же он все еще не хочет запускаться, то имеет смысл, последовательно меняя на новые, проверить крышку распределителя, ротор, бесконтактный датчик и катушку зажигания. В процессе этой "меняльной" процедуры двигатель все-таки заведется, а позже дома, вместе со специалистом вы сможете разобраться, какой конкретно узел вышел из строя и почему.

Эксплуатация системы зажигания

При нормальной эксплуатации автомобиля и периодическом его обслуживании система зажигания не доставляет водителю больших хлопот. Но некоторые водители вообще забывают о том, что кроме пепельницы и магнитолы в автомобиле есть еще и многострадальный двигатель, и в частности его система зажигания.

Наступает момент, и машина "говорит" водителю о том, что у нее тоже есть "нервы и предел терпения". Двигатель начинает фыркать и дымить, глохнуть и не заводиться. Это могут быть крупные поломки или мелкие неисправности в системах и механизмах двигателя, но, как правило, проблема кроется всего лишь в нарушенных регулировках и соединениях.

Так как мы уже знаем, что "электроника – это наука о контактах", то в первую очередь необходимо следить за чистотой и надежностью электрических соединений. Поэтому при эксплуатации автомобиля иногда приходится зачищать клеммы проводов и штекерные разъемы.

Периодически следует контролировать зазор в контактах прерывателя (рис. 21)и при необходимости его регулировать. Если зазор в контактах прерывателя больше нормы (0,35–0,45 мм), то наблюдается неустойчивая работа двигателя на больших оборотах. Если меньше – неустойчивая работа на оборотах холостого хода. Все это происходит по причине того, что нарушенный зазор меняет время замкнутого состояния контактов. А это уже влияет и на мощность искры, проскакивающей между электродами свечи, и на сам момент ее возникновения в цилиндре (опережение зажигания).

К сожалению, качество нашего бензина нередко оставляет желать лучшего. Поэтому, если сегодня вы заправили свой автомобиль не очень качественным бензином, то в следующий раз он может оказаться еще хуже. Естественно, это не может не влиять на качество приготавливаемой карбюратором горючей смеси и процесс ее сгорания в цилиндре. В таких случаях, чтобы двигатель безотказно продолжал выполнять свою работу, необходимо подстраивать систему зажигания под "сегодняшний" бензин.

Если первоначальный угол опережения зажигания не соответствует оптимальному, то можно наблюдать и ощущать следующие явления.

Угол опережения зажигания слишком велик (раннее зажигание):

    затрудненный запуск холодного двигателя;

    "хлопки" в карбюраторе (обычно хорошо слышны из-под капота при попытках запуска двигателя);

    потеря мощности двигателя (машина плохо "тянет");

    перерасход топлива;

    перегрев двигателя (индикатор температуры охлаждающей жидкости активно стремится к красному сектору);

    повышенное содержание вредных веществ в выхлопных газах.

Угол опережения зажигания меньше нормы (позднее зажигание):

    "выстрелы" в глушителе;

    потеря мощности двигателя;

    перерасход топлива;

    перегрев двигателя.

Короче говоря, при неправильно выставленном зажигании двигатель хочет "умереть", а машина не хочет ехать. Перечень вышеописанных "кошмаров" можно было бы и продолжить, но и этого достаточно для того, чтобы вы поняли, что двигатель и его системы требуют периодических регулировок. А кто будет этим заниматься, зависит от вас. Можно самостоятельно овладеть некоторыми навыками в не очень трудоемких и не очень сложных операциях по регулировкам. Или можно обращаться к специалисту, которому вы будете доверять свою "ласточку".

Свеча зажигания, как было упомянуто ранее, это маленький и с виду простенький элемент системы зажигания, но это только с виду.

Нормальная работа двигателя возможна при условии, если зазор между электродами свечи будет конкретным и одинаковым в свечах всех цилиндров. Для контактных систем зажигания зазор должен быть в пределах 0,5–0,6 мм, а для бесконтактных систем 0,7–0,9 мм и более.

Теперь вспомните "жуткие" условия, в которых работают свечи зажигания. Не всякий металл выдержит огромные температуры в агрессивной среде. Поэтому со временем электроды свечей подгорают и покрываются нагаром.

Вообще-то, изношенные или обросшие нагаром свечи рекомендуется заменить. Но если в пути запасных свечей не оказалось, то очищаем электроды "забарахлившей" свечи от нагара мелкозернистым надфилем или специальной алмазной пластинкой, регулируем зазор, подгибая боковой электрод, и вкручиваем свечу на место.

Каждый раз, выкручивая свечи зажигания, обращайте внимание на цвет их электродов. Если они светло-коричневые, то свеча работает нормально. А если они черные, то возможно свеча вообще не работает.

Сегодня в продаже есть силиконовые высоковольтные провода. При замене вышедших из строя старых проводов имеет смысл приобрести именно силиконовые, так как они не "пробиваются" током высокого напряжения. А ведь перебои в работе двигателя нередко происходят из-за утечки импульса тока высокого напряжения по высоковольтному проводу на "массу" автомобиля. Вместо того чтобы пробивать воздушный барьер между электродами свечи и поджигать рабочую смесь, электрический ток выбирает путь наименьшего сопротивления и "уходит" на сторону.

Старайтесь не открывать капот автомобиля, когда на улице идет дождь или снег. После мокрого душа двигатель может не запуститься, так как вода, попав на приборы электрооборудования и провода, образует токопроводящие мостики, по которым высокое напряжение утекает на "массу".

Тот же эффект, но более усугубленный, возникает у любителей прокатиться по глубоким лужам на большой скорости. В результате "купания"

водой заливаются все приборы и провода системы зажигания, расположенные под капотом, и двигатель, естественно, глохнет, поскольку ток высокого напряжения уже не может добраться до свечей зажигания. Возобновить поездку в таких случаях удается лишь после того, как горячий двигатель своим теплом просушит все "электрическое" в подкапотном пространстве.

Система зажигания на автомобилях с электронным управлением двигателем

На современных автомобилях с электронным управлением двигателем система зажигания состоит из (рис. 27):

    электронного блока управления (ЭБУ);

    датчиков (угла поворота коленчатого вала, положения дроссельной заслонки, детонации, температуры охлаждающей жидкости);

    катушки зажигания (общей или по одной катушке на каждый цилиндр);

    распределителя тока высокого напряжения (при общей катушке зажигания);

    высоковольтных проводов;

    свечей зажигания.


Рис. 27. Схема электронной системы зажигания. Вариант А – с общей катушкой зажигания; Вариант Б – с отдельной катушкой на каждый цилиндр: 1 маховик с зубчатым венцом; 2 – поршень; 3 – цилиндр двигателя; 4 – камера сгорания; 5 – впускной клапан; 6 – поток воздуха; 7 – дроссельная заслонка; 8 – датчик положения дроссельной заслонки; 9 – катушка зажигания; 9" – катушка зажигания на каждой свече; 10 – распределитель тока высокого напряжения; 11 – высоковольтные провода; 11" – электрический провод, по которому к катушке зажигания поступает импульсный сигнал от ЭБУ; 12 – свеча зажигания; 13 – выпускной клапан; 14 – датчик температуры охлаждающей жидкости; 15 – датчик детонации; 16 – датчик угла поворота коленчатого вала; 17 – электронный блок управления (ЭБУ); 18 – диагностическая лампа-сигнализатор; 19 – диагностическая колодка; 20 – замок зажигания; 21 – аккумуляторная батарея

При работе двигателя информация от датчиков поступает в электронный блок управления (ЭБУ). В результате обработки полученной информации ЭБУ устанавливает оптимальный момент зажигания, необходимый для получения максимальной экономичности работы двигателя в каждый отдельный момент времени, и подает импульсный сигнал катушке (катушкам) зажигания.

Электронная система зажигания не требует регулировок и очень надежна в течение всего срока службы.



← Вернуться

×
Вступай в сообщество «lenruo.ru»!
ВКонтакте:
Я уже подписан на сообщество «lenruo.ru»